Ch.9: Object-oriented programming

Hans Petter Langtangen ${ }^{1,2}$

Simula Research Laboratory ${ }^{1}$

University of Oslo, Dept. of Informatics ${ }^{2}$

Oct 30, 2017
(1) Inheritance

The chapter title Object-oriented programming (OO) may mean two different things

(1) Programming with classes (better: object-based programming)
(2) Programming with class hierarchies (class families)

New concept: collect classes in families (hierarchies)

What is a class hierarchy?

- A family of closely related classes
- A key concept is inheritance: child classes can inherit attributes and methods from parent class(es) - this saves much typing and code duplication

As usual, we shall learn through examples!

OO is a Norwegian invention by Ole-Johan Dahl and Kristen Nygaard in the 1960s - one of the most important inventions in computer science, because OO is used in all big computer systems today!

Warning: 00 is difficult and takes time to master

- Let ideas mature with time
- Study many examples
- OO is less important in Python than in C++, Java and C\#, so the benefits of OO are less obvious in Python
- Our examples here on OO employ numerical methods for $\int_{a}^{b} f(x) d x, f^{\prime}(x), u^{\prime}=f(u, t)$ - make sure you understand the simplest of these numerical methods before you study the combination of OO and numerics
- Our goal: write general, reusable modules with lots of methods for numerical computing of $\int_{a}^{b} f(x) d x, f^{\prime}(x), u^{\prime}=f(u, t)$

A class for straight lines

Problem:

Make a class for evaluating lines $y=c_{0}+c_{1} x$.

Code:

A class for straight lines

Problem:

Make a class for evaluating lines $y=c_{0}+c_{1} x$.

Code:


```
def __call__(self, x):
    return self.c0 + self.c1*x
    def table(self, L, R, n):
    """Return a table with
    for x in linspace(L, R, n)
            y = self(x)
```

 return s

A class for straight lines

Problem:

Make a class for evaluating lines $y=c_{0}+c_{1} x$.
Code:

```
class Line:
        def __init__(self, c0, c1):
        self.c0, self.c1 = c0, c1
        def __call__(self, x):
        return self.c0 + self.c1*x
    def table(self, L, R, n):
        """Return a table with n points for L <= x <= R."""
        s = ''
        for x in linspace(L, R, n):
            y = self(x)
            s += '%12g %12g\n' % (x, y)
        return s
```


A class for parabolas

Problem:

Make a class for evaluating parabolas $y=c_{0}+c_{1} x+c_{2} x^{2}$.

Code:

```
x in linspace(L, R, n)
```

$y=\operatorname{self}(x)$

A class for parabolas

Problem:
Make a class for evaluating parabolas $y=c_{0}+c_{1} x+c_{2} x^{2}$.

Code:

```
x in linspace(L, R, n)
y = self(x)
```

Observation:
This is almost the same code as class Line, except for the things
with c 2

A class for parabolas

Problem:

Make a class for evaluating parabolas $y=c_{0}+c_{1} x+c_{2} x^{2}$.

Code:

class Parabola:

```
        def __init__(self, c0, c1, c2):
        self.c0, self.c1, self.c2 = c0, c1, c2
    def __call__(self, x):
        return self.c2*x**2 + self.c1*x + self.c0
    def table(self, L, R, n):
        """Return a table with n points for L <= x <= R."""
        s = ''
        for x in linspace(L, R, n):
            y = self(x)
            s += '%12g %12g\n' % (x, y)
        return s
```


Observation:

This is almost the same code as class Line, except for the things with c 2

A class for parabolas

Problem:

Make a class for evaluating parabolas $y=c_{0}+c_{1} x+c_{2} x^{2}$.

Code:

class Parabola:

```
def __init__(self, c0, c1, c2):
        self.c0, self.c1, self.c2 = c0, c1, c2
    def __call__(self, x):
        return self.c2*x**2 + self.c1*x + self.c0
    def table(self, L, R, n):
        """Return a table with n points for L <= x <= R."""
        s = ''
        for x in linspace(L, R, n):
            y = self(x)
            s += '%12g %12g\n' % (x, y)
```

 return s

Observation:

This is almost the same code as class Line, except for the things with c 2

Class Parabola as a subclass of Line; principles

- Parabola code $=$ Line code + a little extra with the c_{2} term
- Can we utilize class Line code in class Parabola?
- This is what inheritance is about

Writing

class Parabola(Line): pass
makes Parabola inherit all methods and attributes from Line, so Parabola has attributes c0 and c1 and three methods

- Line is a superclass, Parabola is a subclass
(parent class, base class; child class, derived class)
- Class Parabola must add code to Line's constructor (an extra c2 attribute), __call__ (an extra term), but table can be used unaltered
- The principle is to reuse as much code in Line as possible and avoid duplicating code

Class Parabola as a subclass of Line; principles

- Parabola code $=$ Line code + a little extra with the c_{2} term
- Can we utilize class Line code in class Parabola?
- This is what inheritance is about!

Writing

```
class Parabola(Line):
    pass
```

makes Parabola inherit all methods and attributes from Line, so Parabola has attributes c0 and c1 and three methods

- Line is a superclass, Parabola is a subclass
(parent class, base class; child class, derived class)
- Class Parabola must add code to Line's constructor (an extra c2 attribute), __call__ (an extra term), but table can be used unaltered
- The principle is to reuse as much code in Line as possible and avoid duplicating code

Class Parabola as a subclass of Line; principles

- Parabola code $=$ Line code + a little extra with the c_{2} term
- Can we utilize class Line code in class Parabola?
- This is what inheritance is about!

Writing

```
class Parabola(Line):
    pass
```

makes Parabola inherit all methods and attributes from Line, so Parabola has attributes c0 and c1 and three methods

- Line is a superclass, Parabola is a subclass (parent class, base class; child class, derived class)
- Class Parabola must add code to Line's constructor (an extra c2 attribute), __call__ (an extra term), but table can be used unaltered
- The principle is to reuse as much code in Line as possible and avoid duplicating code

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way: superclass_name.method(self, arg1, arg2, ...)

Class Parabola as a subclass of Line:
class Parabola(Line):

```
def __init__(self, c0, c1, c2):
        Line.__init__(self, c0, c1) # Line stores c0, c1
        self.c2 = c2
    def __call__(self, x):
    return Line.__call__(self, x) + self.c2*x**2
```

What is gained?

- Class Parabola just adds code to the already existing code in class Line - no duplication of storing c0 and c1, and computing $c_{0}+c_{1} x$
- Class Parabola also has a table method - it is inherited

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way: superclass_name.method(self, arg1, arg2, ...)

Class Parabola as a subclass of Line:
class Parabola(Line):

```
def __init__(self, c0, c1, c2):
        Line.__init__(self, c0, c1) # Line stores c0, c1
        self.c2 = c2
    def __call__(self, x):
        return Line.__call__(self, x) + self.c2*x**2
```

What is gained?

- Class Parabola just adds code to the already existing code in class Line - no duplication of storing c0 and c1, and computing $c_{0}+c_{1} x$
- Class Parabola also has a table method - it is inherited subclass

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way: superclass_name.method(self, arg1, arg2, ...)

Class Parabola as a subclass of Line:
class Parabola(Line):

```
def __init__(self, c0, c1, c2):
        Line.__init__(self, c0, c1) # Line stores c0, c1
        self.c2 = c2
    def __call__(self, x):
        return Line.__call__(self, x) + self.c2*x**2
```

What is gained?

- Class Parabola just adds code to the already existing code in class Line - no duplication of storing c0 and c1, and computing $c_{0}+c_{1} x$
- Class Parabola also has a table method - it is inherited
- _-init_ and \square

Class Parabola as a subclass of Line; code

A subclass method can call a superclass method in this way: superclass_name.method(self, arg1, arg2, ...)
Class Parabola as a subclass of Line:
class Parabola(Line):

```
    def __init__(self, c0, c1, c2):
        Line.__init__(self, c0, c1) # Line stores c0, c1
        self.c2 = c2
    def __call__(self, x):
        return Line.__call__(self, x) + self.c2*x**2
```

What is gained?

- Class Parabola just adds code to the already existing code in class Line - no duplication of storing c0 and c1, and computing $c_{0}+c_{1} x$
- Class Parabola also has a table method - it is inherited
- __init__ and __call__ are overridden or redefined in the subclass

Class Parabola as a subclass of Line; demo

```
p = Parabola(1, -2, 2)
p1 = p(2.5)
print p1
print p.table(0, 1, 3)
```

Output:
8.5

0	1
0.5	0.5
1	1

class Line:

```
def __init__(self, c0, c1):
        self.c0, self.c1 = c0, c1
def __call__(self, x):
        return self.c0 + self.c1*x
def table(self, L, R, n):
        """Return a table with n points for L <= x <= R."""
        s = ''
        for x in linspace(L, R, n):
            y = self(x)
            s += '%12g %12g\n' % (x, y)
        return s
class Parabola(Line):
    def __init__(self, c0, c1, c2):
        Line.__init__(self, c0, c1) # Line stores c0, c1
        self.c2 = c2
    def __call__(self, x):
        return Line.__call__(self, x) + self.c2*x**2
p = Parabola(1, -2, 2)
print p(2.5)
```

(Visualize execution)

We can check class type and class relations with isinstance (obj, type) and issubclass(subclassname, superclassname)

```
>>> from Line_Parabola import Line, Parabola
>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False
>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
>>> isinstance(p, Line)
True
>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False
>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
'Parabola'
```


Line as a subclass of Parabola

- Subclasses are often special cases of a superclass
- A line $c_{0}+c_{1} x$ is a special case of a parabola $c_{0}+c_{1} x+c_{2} x^{2}$
- Can Line be a subclass of Parabola?
- No problem - this is up to the programmer's choice
- Many will prefer this relation between a line and a parabola

Code when Line is a subclass of Parabola

class Parabola:

```
    def __init__(self, c0, c1, c2):
        self.c0, self.c1, self.c2 = c0, c1, c2
```

 def __call__(self, x):
 return self.c2*x**2 + self.c1*x + self.c0
 def table(self, L, R, n):
 """Return a table with \(n\) points for \(L<=x<=R\)."""
 s = ' '
 for \(x\) in linspace(L, R, \(n\)):
 \(y=\operatorname{self}(x)\)
 s \(+=1 \% 12 \mathrm{~g} \% 12 \mathrm{~g} \backslash \mathrm{n}^{\prime} \%(\mathrm{x}, \mathrm{y})\)
 return s
 class Line(Parabola):

```
    def __init__(self, c0, c1):
        Parabola.__init__(self, c0, c1, 0)
```

Note: __call__ and table can be reused in class Line!

Recall the class for numerical differentiation from Ch. 7

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

```
class Derivative:
    def __init__(self, f, h=1E-5):
        self.f = f
        self.h = float(h)
    def __call__(self, x):
        f, h = self.f, self.h # make short forms
        return (f(x+h) - f(x))/h
def f(x):
    return exp(-x)*\operatorname{cos}(tanh(x))
from math import exp, cos, tanh
dfdx = Derivative(f)
print dfdx(2.0)
```

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(x+h)-f(x)}{h}+\mathcal{O}(h) \\
f^{\prime}(x) & =\frac{f(x)-f(x-h)}{h}+\mathcal{O}(h) \\
f^{\prime}(x) & =\frac{f(x+h)-f(x-h)}{2 h}+\mathcal{O}\left(h^{2}\right) \\
f^{\prime}(x) & =\frac{4}{3} \frac{f(x+h)-f(x-h)}{2 h}-\frac{1}{3} \frac{f(x+2 h)-f(x-2 h)}{4 h}+\mathcal{O}\left(h^{4}\right) \\
f^{\prime}(x) & =\frac{3}{2} \frac{f(x+h)-f(x-h)}{2 h}-\frac{3}{5} \frac{f(x+2 h)-f(x-2 h)}{4 h}+ \\
& \frac{1}{10} \frac{f(x+3 h)-f(x-3 h)}{6 h}+\mathcal{O}\left(h^{6}\right) \\
f^{\prime}(x) & =\frac{1}{h}\left(-\frac{1}{6} f(x+2 h)+f(x+h)-\frac{1}{2} f(x)-\frac{1}{3} f(x-h)\right)+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

It's easy:

```
class Forward1:
            def __init__(self, f, h=1E-5):
    def __call__(self, x):
        f,h = self.f, self.h
        return (f(x+h) - f(x))/h
class Backward1:
    def __init__(self, f, h=1E-5):
    def __call__(self, x):
        f,h = self.f, self.h
        return (f(x) - f(x-h))/h
class Central2:
    # same constructor
    # put relevant formula in __call__
```


What is the problem with this type of code?

All the constructors are identical so we duplicate a lot of code.

- A general OO idea: place code common to many classes in a superclass and inherit that code
- Here: inhert constructor from superclass, let subclasses for different differentiation formulas implement their version of __call__

Class hierarchy for numerical differentiation

Superclass:

```
class Diff:
\[
\begin{aligned}
& \text { def _-init__(self, f, h=1E-5): } \\
& \text { self.f }=f \\
& \text { self.h }=\text { float (h) }
\end{aligned}
\]
```

Subclass for simple 1st-order forward formula:

```
class Forward1(Diff):
        def __call__(self, x):
        f, h = self.f, self.h
        return (f(x+h) - f(x))/h
```

Subclass for 4-th order central formula:
class Central4(Diff):

$$
\begin{aligned}
& \text { def } \quad \begin{array}{l}
\text { _call__(self, } x): \\
\mathrm{f}, \mathrm{~h}=\text { self.f, self.h } \\
\text { return }(4 . / 3) *(\mathrm{f}(\mathrm{x}+\mathrm{h}) \\
\\
\\
(1 . / 3) *(\mathrm{f}(\mathrm{x}+2 * \mathrm{~h})-\mathrm{f}(\mathrm{x}-\mathrm{h})) \quad /(2 * \mathrm{~h})-\mathrm{x}-2 * \mathrm{~h})) /(4 * \mathrm{~h})
\end{array}
\end{aligned}
$$

Use of the differentiation classes

Interactive example: $f(x)=\sin x$, compute $f^{\prime}(x)$ for $x=\pi$

```
>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> # compute sin'(pi):
>>> mycos(pi)
-1.000000082740371
```

Central4 (sin) calls inherited constructor in superclass, while mycos(pi) calls __call__ in the subclass Central4

```
class Diff:
    def __init__(self, f, h=1E-5):
        self.f = f
        self.h = float(h)
class Forward1(Diff):
    def __call__(self, x):
        f,h = self.f, self.h
        return (f(x+h) - f(x))/h
dfdx = Diff(lambda x: x**2)
print dfdx(0.5)
```

(Visualize execution)

A flexible main program for numerical differentiation

Suppose we want to differentiate function expressions from the command line:

```
Terminal> python df.py 'exp(sin(x))' Central 2 3.1
-1.04155573055
```

```
Terminal> python df.py 'f(x)' difftype difforder x
```

Terminal> python df.py 'f(x)' difftype difforder x
f'(x)

```
f'(x)
```

With eval and the Diff class hierarchy this main program can be realized in a few lines (many lines in C\# and Java!):

```
import sys
from Diff import *
from math import *
from scitools.StringFunction import StringFunction
f = StringFunction(sys.argv[1])
difftype = sys.argv[2]
difforder = sys.argv[3]
classname = difftype + difforder
df = eval(classname + '(f)')
x = float(sys.argv[4])
print df(x)
```


Investigating numerical approximation errors

- We can empirically investigate the accuracy of our family of 6 numerical differentiation formulas
- Sample function: $f(x)=\exp (-10 x)$
- See the book for a little program that computes the errors:

h	Forward1	Central2	Central4
6.25E-02	$-2.56418286 \mathrm{E}+00$	$6.63876231 \mathrm{E}-01$	$-5.32825724 \mathrm{E}-02$
$3.12 \mathrm{E}-02$	$-1.41170013 \mathrm{E}+00$	$1.63556996 \mathrm{E}-01$	$-3.21608292 \mathrm{E}-03$
$1.56 \mathrm{E}-02$	$-7.42100948 \mathrm{E}-01$	$4.07398036 \mathrm{E}-02$	$-1.99260429 \mathrm{E}-04$
$7.81 \mathrm{E}-03$	$-3.80648092 \mathrm{E}-01$	$1.01756309 \mathrm{E}-02$	$-1.24266603 \mathrm{E}-05$
$3.91 \mathrm{E}-03$	$-1.92794011 \mathrm{E}-01$	$2.54332554 \mathrm{E}-03$	$-7.76243120 \mathrm{E}-07$
$1.95 \mathrm{E}-03$	$-9.70235594 \mathrm{E}-02$	$6.35795004 \mathrm{E}-04$	$-4.85085874 \mathrm{E}-08$

Observations:

- Halving h from row to row reduces the errors by a factor of 2 , 4 and 16, i.e, the errors go like h, h^{2}, and h^{4}
- Central4 has really superior accuracy compared with Forward1

Alternative implementations (in the book)

- Pure Python functions downside: more arguments to transfer, cannot apply formulas twice to get 2nd-order derivatives etc.
- Functional programming gives the same flexibility as the OO solution
- One class and one common math formula applies math notation instead of programming techniques to generalize code

These techniques are beyond scope in the course, but place OO into a bigger perspective. Might better clarify what OO is - for some.

There are numerous formulas for numerical integration and all of them can be put into a common notation:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} w_{i} f\left(x_{i}\right)
$$

w_{i} : weights, x_{i} : points (specific to a certain formula)

The Trapezoidal rule has $h=(b-a) /(n-1)$ and

$$
x_{i}=a+i h, \quad w_{0}=w_{n-1}=\frac{h}{2}, w_{i}=h(i \neq 0, n-1)
$$

The Midpoint rule has $h=(b-a) / n$ and

$$
x_{i}=a+\frac{h}{2}+i h, \quad w_{i}=h
$$

More formulas

Simpson's rule has

$$
\begin{aligned}
& x_{i}=a+i h, \quad h=\frac{b-a}{n-1} \\
& w_{0}=w_{n-1}=\frac{h}{6} \\
& w_{i}=\frac{h}{3} \text { for } i \text { even, } w_{i}=\frac{2 h}{3} \text { for } i \text { odd }
\end{aligned}
$$

Other rules have more complicated formulas for w_{i} and x_{i}

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes
- Recall: code duplication is a bad thing!
- The general OO idea: place code common to many classes in a superclass and inherit that code

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes
- Recall: code duplication is a bad thing!
- The general OO idea: place code common to many classes in a superclass and inherit that code

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes
- Recall: code duplication is a bad thing!
- The general OO idea: place code common to many classes in a superclass and inherit that code
- Here we put $\sum_{j} w_{j} f\left(x_{j}\right)$ in a superclass (method integrate) formula, i.e., w_{i} and x_{i} in a class method construct_rule

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes
- Recall: code duplication is a bad thing!
- The general OO idea: place code common to many classes in a superclass and inherit that code
- Here we put $\sum_{j} w_{j} f\left(x_{j}\right)$ in a superclass (method integrate)
- Subclasses extend the superclass with code specific to a math formula, i.e., w_{i} and x_{i} in a class method construct_rule

Why should these formulas be implemented in a class hierarchy?

- A numerical integration formula can be implemented as a class: a, b and n are attributes and an integrate method evaluates the formula
- All such classes are quite similar: the evaluation of $\sum_{j} w_{j} f\left(x_{j}\right)$ is the same, only the definition of the points and weights differ among the classes
- Recall: code duplication is a bad thing!
- The general OO idea: place code common to many classes in a superclass and inherit that code
- Here we put $\sum_{j} w_{j} f\left(x_{j}\right)$ in a superclass (method integrate)
- Subclasses extend the superclass with code specific to a math formula, i.e., w_{i} and x_{i} in a class method construct_rule

```
class Integrator:
    def __init__(self, a, b, n):
        self.a, self.b, self.n = a, b, n
        self.points, self.weights = self.construct_method()
    def construct_method(self):
        raise NotImplementedError('no rule in class %s' % \
        self.__class__.__name__)
    def integrate(self, f):
        s = 0
        for i in range(len(self.weights)):
            s += self.weights[i]*f(self.points[i])
        return s
    def vectorized_integrate(self, f):
        # f must be vectorized for this to work
        return dot(self.weights, f(self.points))
```


A subclass: the Trapezoidal rule

```
class Trapezoidal(Integrator):
    def construct_method(self):
        h = (self.b - self.a)/float(self.n - 1)
        x = linspace(self.a, self.b, self.n)
        w = zeros(len(x))
        w[1:-1] += h
        w[0] = h/2; w[-1] = h/2
        return x, w
```


Another subclass: Simpson's rule

- Simpson's rule is more tricky to implement because of different formulas for odd and even points
- Don't bother with the details of w_{i} and x_{i} in Simpson's rule now - focus on the class design!

```
class Simpson(Integrator):
    def construct_method(self):
        if self.n % 2 != 1:
            print 'n=%d must be odd, 1 is added' % self.n
            self.n += 1
        <code for computing x and w>
        return x, w
```


About the program flow

Let us integrate $\int_{0}^{2} x^{2} d x$ using 101 points:

```
def f(x):
    return x*x
```

method $=\operatorname{Simpson}(0,2,101)$
print method.integrate(f)

Important:

- method = Simpson(...): this invokes the superclass constructor, which calls construct_method in class Simpson
- method.integrate(f) invokes the inherited integrate method, defined in class Integrator

```
class Integrator:
    def __init__(self, a, b, n):
        self.a, self.b, self.n = a, b, n
        self.points, self.weights = self.construct_method()
    def construct_method(self):
        raise NotImplementedError('no rule in class %s' % \
                self.__class__.__name__)
    def integrate(self, f):
        s = 0
        for i in range(len(self.weights)):
            s += self.weights[i]*f(self.points[i])
        return s
class Trapezoidal(Integrator):
    def construct_method(self):
        h = (self.b - self.a)/float(self.n - 1)
        x = linspace(self.a, self.b, self.n)
        w = zeros(len(x))
        w[1:-1] += h
        w[0] = h/2; w[-1] = h/2
        return x, w
def f(x):
    return x*x
method = Trapezoidal(0, 2, 101)
print method.integrate(f)
```


Applications of the family of integration classes

We can empirically test out the accuracy of different integration methods Midpoint, Trapezoidal, Simpson, GaussLegendre2, ... applied to, e.g.,

$$
\int_{0}^{1}\left(1+\frac{1}{m}\right) t^{\frac{1}{m}} d t=1
$$

- This integral is "difficult" numerically for $m>1$.
- Key problem: the error in numerical integration formulas is of the form Cn^{-r}, mathematical theory can predict r (the "order'), but we can estimate r empirically too
- See the book for computational details
- Here we focus on the conclusions

Convergence rates for $m<1$ (easy case)

Simpson and Gauss-Legendre reduce the error faster than Midpoint and Trapezoidal (plot has $\ln ($ error) versus $\ln n$)

Convergence rates for $m>1$ (problematic case)

Simpson and Gauss-Legendre, which are theoretically "smarter" than Midpoint and Trapezoidal do not show superior behavior!

- A subclass inherits everything from the superclass
- When to use a subclass/superclass?
- if code common to several classes can be placed in a superclass
- if the problem has a natural child-parent concept
- The program flow jumps between super- and sub-classes
- It takes time to master when and how to use OO
- Study examples!

Recall the class hierarchy for differentiation

Mathematical principles:

Collection of difference formulas for $f^{\prime}(x)$. For example,

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

Superclass Diff contains common code (constructor), subclasses implement various difference formulas.

Implementation example (superclass and one subclass)

```
class Diff:
    def __init__(self, f, h=1E-5):
        self.f = f
        self.h = float(h)
class Central2(Diff):
        def __call__(self, x):
        f, h = self.f, self.h
        return (f(x+h) - f(x-h))/(2*h)
```


Recall the class hierarchy for integration (1)

Mathematical principles:

General integration formula for numerical integration:

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=0}^{n-1} w_{i} f\left(x_{i}\right)
$$

Superclass Integrator contains common code (constructor, $\sum_{j} w_{i} f\left(x_{i}\right)$), subclasses implement definition of w_{i} and x_{i}.

Recall the class hierarchy for integration (2)

Implementation example (superclass and one subclass):

```
class Integrator:
    def __init__(self, a, b, n):
        self.a, self.b, self.n = a, b, n
        self.points, self.weights = self.construct_method()
    def integrate(self, f):
        s = 0
        for i in range(len(self.weights)):
            s += self.weights[i]*f(self.points[i])
        return s
class Trapezoidal(Integrator):
    def construct_method(self):
        x = linspace(self.a, self.b, self.n)
        h = (self.b - self.a)/float(self.n - 1)
        W = zeros(len(x)) + h
        w[0] /= 2; w[-1] /= 2 # adjust end weights
        return x, w
```


A summarizing example: Generalized reading of input data

Write a table of $x \in[a, b]$ and $f(x)$ to file:

```
outfile = open(filename, 'w')
from numpy import linspace
for x in linspace(a, b, n):
    outfile.write('%12g %12g\n' % (x, f(x)))
outfile.close()
```


We want flexible input:

Read a, b, n, filename and a formula for f from...

- the command line
- interactive commands like $a=0, b=2$, filename=mydat. dat
- questions and answers in the terminal window
- a graphical user interface
- a file of the form

```
a = 0
b = 2
filename = mydat.dat
```


Graphical user interface


```
Desired usage:
    from ReadInput import *
    # define all input parameters as name-value pairs in a dict:
    p = dict(formula='x+1', a=0, b=1, n=2, filename='tmp.dat')
    # read from some input medium:
    inp = ReadCommandLine(p)
    # or
    inp = PromptUser(p) # questions in the terminal window
    # or
    inp = ReadInputFile(p) # read file or interactive commands
    # or
    inp = GUI(p) # read from a GUI
    # load input data into separate variables (alphabetic order)
    a, b, filename, formula, n = inp.get_all()
    # go!
```


About the implementation

- A superclass ReadInput stores the dict and provides methods for getting input into program variables (get, get_all)
- Subclasses read from different input sources
- ReadCommandLine, PromptUser, ReadInputFile, GUI
- See the book or ReadInput.py for implementation details
- For now the ideas and principles are more important than code details!

