Ch.5: Array computing and curve plotting (Part 1)

2

Joakim Sundnes?: Hans Petter Langtangen!»?

Simula Research Laboratory!

University of Oslo, Dept. of Informatics?

Sep 20, 2017

Plan for week 38

Wednesday 20 september
@ Live programming of ex 4.4, 4.5, 4.6, 4.7
@ Intro to plotting and NumPy arrays

Friday 22 september
@ Live programming of ex 5.7, 5.9, 5.10, 5.11, 5.13
@ Making movies and animations from plots

e (Making your own Python modules)

visualize functio

Goal: learn

HDw TO_WRITE PROGRANS THAT CAN PQDDOCE SUCH PLOTS?
i Adias

0.0¢ 00..0'

1
0.0 05 10 \5 2.0 25 3.0 35 u.0

We need to learn about a new object: array

We need to learn about a new object: array

e Curves y = f(x) are visualized by drawing straight lines
between points along the curve

@ Need to store the coordinates of the points along the curve in
lists or arrays x and y

@ Arrays = lists, but computationally much more efficient

@ To compute the y coordinates (in an array) we need to learn
about array computations or vectorization

@ Array computations are useful for much more than plotting
curves!

The minimal need-to-know about vectors

The minimal need-to-know about vectors

@ Vectors are known from high school mathematics, e.g.,
point (x,y) in the plane, point (x, y, z) in space

@ In general, a vector v is an n-tuple of numbers:
v=_(vo,...,Vn_1)

@ Vectors can be represented by lists: v; is stored as v[i],
but we shall use arrays instead

The minimal need-to-know about vectors

@ Vectors are known from high school mathematics, e.g.,
point (x,y) in the plane, point (x, y, z) in space

@ In general, a vector v is an n-tuple of numbers:
v=_(vo,...,Vn_1)

@ Vectors can be represented by lists: v; is stored as v[i],
but we shall use arrays instead

Vectors and arrays are key concepts in this chapter. It takes separate math
courses to understand what vectors and arrays really are, but in this course we
only need a small subset of the complete story. A learning strategy may be to
just start using vectors/arrays in programs and later, if necessary, go back to
the more mathematical details in the first part of Ch. 5.

The minimal need-to-know about arrays

Arrays are a generalization of vectors where we can have multiple
indices: A,'J, A,"J"k

Example: table of numbers, one index for the row, one for the
column

0 12 -1 5 Avo - Aon-1
-1 -1 -1 0 A= ; ;

11 5 5 -2 Am-10 Am—1n1

@ The no of indices in an array is the rank or number of
dimensions

@ Vector = one-dimensional array, or rank 1 array

@ In Python code, we use Numerical Python arrays instead of
nested lists to represent mathematical arrays (because this is
computationally more efficient)

Storing (x,y) points on a curve in lists

Collect points on a function curve y = f(x) in lists:

>>> def f(x):
. return x**3

>>>n =5 # no of points
>>> dx = 1.0/(n-1) # x spacing in [0,1]
>>> xlist [i*dx for i in range(n)]

>>> ylist = [£(x) for x in xlist]

>>> pairs = [[x, y] for x, y in zip(xlist, ylist)]

Turn lists into Numerical Python (NumPy) arrays:

>>> import numpy as np # module for arrays
>>> x = np.array(xlist) # turn list zlist into array
>>> y = np.array(ylist)

Make arrays directly (instead of lists)

The pro drops lists and makes NumPy arrays directly:

>>>n =5 # number of points
>>> x = np.linspace(0, 1, n) # n points in [0, 1]
>>> y = np.zeros(n) # n zeros (float data type)

>>> for i in range(n):

yl[il = £(x[i])

Arrays are not as flexible as list, but computational much

more efficient

@ List elements can be any Python objects
@ Array elements can only be of one object type

@ Arrays are very efficient to store in memory and compute with
if the element type is float, int, or complex

@ Rule: use arrays for sequences of numbers!

We can work with entire arrays at once - instead of one

element at a time

Compute the sine of an array:

from math import sin

for i in range(len(x)):
y[i]l = sin(x[il)

However, if x is array, y can be computed by
y = np.sin(x) # x: array, y: array

The loop is now inside np.sin and implemented in very efficient C
code.

| A\

Vectorization gives:
@ shorter, more readable code, closer to the mathematics

@ much faster code

A function f (x) written for a number x usually works for

array x too

from numpy import sin, exp, linspace

def f(x):
return x**3 + sin(x)*exp(-3*x)
x = 1.2 # float object
y = £(x) # y is float
x = linspace(0, 3, 10001) # 10000 intervals in [0,3]
y = £(x) # vy is array

v

Note: math is for numbers and numpy for arrays

>>> import math, numpy

>>> x = numpy.linspace(0, 1, 11)
>>> math.sin(x[3])
0.2955202066613396

>>> math.sin(x)

TypeError: only length-1 arrays can be converted to Python scalans

>>> numpy.sin(x)

array ([0. , 0.09983, 0.19866, 0.29552, 0.38941,
0.47942, 0.56464, 0.64421, 0.71735, 0.78332,
0.84147])

Very important application: vectorized code for computing

points along a curve

1
f(x) = 23X sin(x — §7r), x € [0, 4]

Vectorized computation of n+ 1 points along the curve

from numpy import *

100
linspace(0, 4*pi, n+1)
2.5 + x*x2xexp(-0.5%x)*sin(x-pi/3)

el
o n

New term: vectorization

New term: vectorization

@ Scalar: a number
@ Vector or array: sequence of numbers (vector in mathematics)

@ We speak about scalar computations (one number at a time)
versus vectorized computations (operations on entire arrays,
no Python loops)

e Vectorized functions can operate on arrays (vectors)

e Vlectorization is the process of turning a non-vectorized
algorithm with (Python) loops into a vectorized version
without (Python) loops

o Mathematical functions in Python without if tests
automatically work for both scalar and vector (array)
arguments (i.e., no vectorization is needed by the programmer)

Small quiz:

What is output from the following code? Why?

import numpy as np

1= [0,0.25,0.5,0.75,1]
a = np.array(l)
print (1x2)

print(ax2)

