
Ch.5: Array computing and curve plotting

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Sep 27, 2017

Plan for week 39

Wednesday 27 september
Live programming of ex 5.13, 5.29, 5.39
Animations in matplotlib
Making our own modules (from Chapter 4)

Friday 29 september
Live programming of ex 5.39, A.1
Programming of difference equations (Appendix A)

Quick recap 1: the plotting recipe

Plot the curve of y(t) = t2e−t2 :

from matplotlib.pyplot import *
from numpy import *

Make points along the curve
t = linspace(0, 3, 51) # 50 intervals in [0, 3]
y = t**2*exp(-t**2) # vectorized expression

xlabel('t') # label on the x axis
ylabel('y') # label on the y axix
legend() # mark the curve
title('My First Matplotlib Demo')
plot(t, y, label='t^2*exp(-t^2)'))

savefig('fig.pdf') # save figure as pdf
show()

Quick recap 2: minimal typing

Plotting code can be short. Here’s a lazy version for plotting two
curves in the same plot:

from matplotlib.pyplot import *
from numpy import *

t = linspace(0, 3, 51)
plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))
show()

Let’s make a movie/animation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2

s=1

s=2

The Gaussian/bell function

f (x ;m, s) =
1√
2π

1
s
exp

[
−1
2

(
x −m

s

)2
]

m is the location of the peak
s is a measure of the width
of the function
Make a movie (animation)
of how f (x ;m, s) changes
shape as s goes from 2 to
0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2 0 2 4 6

s=0.2

s=1

s=2

Movies are made from a (large) set of individual plots

Goal: make a movie showing how f (x) varies in shape as s
decreases
Idea: put many plots (for different s values) together
(exactly as a cartoon movie)
Very important: fix the y axis! Otherwise, the y axis always
adapts to the peak of the function and the visual impression
gets completely wrong

Three alternative recipes

1 Let the animation run live, without saving any files
Not possible to pause, slow down etc

2 Loop over all data values, plot and make a hardcopy (file) for
each value, combine all hardcopies to a movie

Requires separate software (for instance ImageMagick) to see
the animation

3 Use the ’Animate’ function in ’matplotlib’
Plays the animation live
Relies on external software to save a movie file

Alt. 1: General idea

Fix the axes!
Use a ’for’-loop to loop over s-values
Compute new y -values and update the plot for each run
through the loop

Alt. 1: Complete code

from matplotlib.pyplot import *
from numpy import *

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)

x = linspace(m -3*s_start, m + 3*s_start, 1000)
f is max for x=m (smaller s gives larger max value)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plot(x,y) #Returns a list of line objects!
axis([x[0], x[-1], -0.1, max_f])
xlabel('x')
ylabel('f')

for s in s_values:
y = f(x, m, s)
lines[0].set_ydata(y) #update plot data and redraw
draw()
pause(0.1)

Alt. 2: General idea

Same ’for’-loop as alternative 1
Use ’printf’-formatting to generate a unique file name for each
plot
Save file

Alt. 2: Complete code

from matplotlib.pyplot import *
from numpy import *

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)

x = linspace(m -3*s_start, m + 3*s_start, 1000)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plot(x,y)
axis([x[0], x[-1], -0.1, max_f])

frame_counter = 0
for s in s_values:

y = f(x, m, s)
lines[0].set_ydata(y)
draw()
savefig('tmp_%04d.png' % frame_counter) #unique filename
frame_counter += 1

How to combine plot files to a movie (video file)

We now have a lot of files:
tmp_0000.png tmp_0001.png tmp_0002.png ...

We use some program to combine these files to a video file:

convert for animated GIF format (if just a few plot files)
ffmpeg (or avconv) for MP4, WebM, Ogg, and Flash formats

Make and play animated GIF file

Tool: convert from the ImageMagick software suite.
Unix command:
Terminal> convert -delay 20 tmp_*.png movie.gif

Delay: 30/100 s, i.e., 0.5 s between each frame.
Play animated GIF file with animate from ImageMagick:
Terminal> animate movie.gif

or open the file in a browser.

Alt. 3: General idea

Make two functions:
One for initialization of plot
One that updates the plot for each frame

Make a list or array of the argument that changes (here s)
Pass both functions and the list as arguments to the function
AnimateFunc

Alt. 3: Complete code
from numpy import *
from matplotlib.pyplot import *
from matplotlib.animation import FuncAnimation

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = np.linspace(s_start, s_stop, 30)
x = np.linspace(m -3*s_start, m + 3*s_start, 1000)
max_f = f(m, m, s_stop)
lines = plot([],[]) #empty plot to create the lines object

def init():
axis([x[0], x[-1], -0.1, max_f])
lines[0].set_xdata(x)
return lines

def update(frame):
y = f(x, m, frame)
lines[0].set_ydata(y)
return lines

ani = FuncAnimation(gcf(), update, frames=s_values,
init_func=init, blit=True)

ani.save('test.gif')
show()

Notes on making movies

Making actual movie files require external software such as
ImageMagick or ffmpeg
The software may be tricky to install (simple recipes exist, but
don’t always work)
For the animation assignments in this course, you do not have
to make movie files. You either:

Use Alt 1 or Alt 3 to make the animation run live
Use Alt 2 to create a lot of image files

If you can also make the movie files this is great, but it will
not be required

Making your own modules

We have frequently used modules like math and sys:
from math import log
r = log(6) # call log function in math module

import sys
x = eval(sys.argv[1]) # access list argv in sys module

Characteristics of modules:

Collection of useful data and functions
(later also classes)
Functions in a module can be reused in many different
programs
If you have some general functions that can be handy in more
than one program, make a module with these functions
It’s easy: just collect the functions you want in a file, and
that’s a module!

Case on making our own module

Here are formulas for computing with interest rates:

A = A0

(
1+

p

360 · 100

)n
, (1)

A0 = A
(
1+

p

360 · 100

)−n
, (2)

n =
ln A

A0

ln
(
1+ p

360·100

) , (3)

p = 360 · 100

((
A

A0

)1/n

− 1

)
. (4)

A0: initial amount, p: percentage, n: days, A: final amount

We want to make a module with these four functions.

First we make Python functions for the formuluas

from math import log as ln

def present_amount(A0, p, n):
return A0*(1 + p/(360.0*100))**n

def initial_amount(A, p, n):
return A*(1 + p/(360.0*100))**(-n)

def days(A0, A, p):
return ln(A/A0)/ln(1 + p/(360.0*100))

def annual_rate(A0, A, n):
return 360*100*((A/A0)**(1.0/n) - 1)

Then we can make the module file

Collect the 4 functions in a file interest.py

Now interest.py is actually a module interest (!)

Example on use:
How long time does it take to double an amount of money?

from interest import days
A0 = 1; A = 2; p = 5
n = days(A0, 2, p)
years = n/365.0
print('Money has doubled after %.1f years' % years)

Adding a test block in a module file

Module files can have an if test at the end containing a test
block for testing or demonstrating the module
The test block is not executed when the file is imported as a
module in another program
The test block is executed only when the file is run as a
program

if __name__ == '__main__': # this test defineds the test block
<block of statements>

Test blocks are often collected in functions

We can put the test in a real test function, and call it from the test
block:
def test_all_functions():

Define compatible values
A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730
Given three of these, compute the remaining one
and compare with the correct value (in parenthesis)
A_computed = present_amount(A0, p, n)
A0_computed = initial_amount(A, p, n)
n_computed = days(A0, A, p)
p_computed = annual_rate(A0, A, n)
def float_eq(a, b, tolerance=1E-12):

"""Return True if a == b within the tolerance."""
return abs(a - b) < tolerance

success = float_eq(A_computed, A) and \
float_eq(A0_computed, A0) and \
float_eq(p_computed, p) and \
float_eq(n_computed, n)

assert success # could add message here if desired

if __name__ == '__main__':
test_all_functions()

How can Python find our new module?

If the module is in the same folder as the main program,
everything is simple and ok
Home-made modules are normally collected in a common
folder, say /Users/hpl/lib/python/mymods

In that case Python must be notified that our module is in
that folder

Technique 1: add folder to PYTHONPATH in .bashrc:
export PYTHONPATH=$PYTHONPATH:/Users/hpl/lib/python/mymods

Technique 2: add folder to sys.path in the program:
sys.path.insert(0, '/Users/hpl/lib/python/mymods')

Technique 3: move the module file in a directory that Python
already searches for libraries.

