Ch.5: Array computing and curve plotting

2

Joakim Sundnes?: Hans Petter Langtangen!»?

Simula Research Laboratory?!

University of Oslo, Dept. of Informatics?

Sep 27, 2017

Plan for week 39

Wednesday 27 september
@ Live programming of ex 5.13, 5.29, 5.39
@ Animations in matplotlib

e Making our own modules (from Chapter 4)

Friday 29 september
@ Live programming of ex 5.39, A.1

@ Programming of difference equations (Appendix A)

Quick recap 1: the plotting recipe

Plot the curve of y(t) = t2e *":

from matplotlib.pyplot import *
from numpy import *

Make points along the curve

t = linspace(0, 3, 51) # 50 intervals in [0, 3]

y = tx*2xexp(-t**2) # vectorized expression

xlabel('t"') # label on the = azis
ylabel('y"') # label on the y azig
legend() # mark the curve

title('My First Matplotlib Demo')
plot(t, y, label='t~2*exp(-t~2)'))

savefig('fig.pdf"') # save figure as pdf
show ()

Quick recap 2: minimal typing

Plotting code can be short. Here's a lazy version for plotting two
curves in the same plot:

from matplotlib.pyplot import *
from numpy import *

t = linspace(0, 3, 51)
plot(t, t**2xexp(-t**2), t, t*xdxexp(-t*x2))
show ()

Let's make a movie/animation

s=02 ——
L =1 — —
1.8 2 — —
16
14
1.2
1k
0.8
0.6
04
. N
7/ N
0.2 - —
— = -
0 e ! N o~
6 -4 2 0 2 4 6

The Gaussian/bell function

tema o[3(52)

18

2 ——
16
14

@ m is the location of the peak

@ s is a measure of the width o
of the function o0

02 s =

@ Make a movie (animation) I A
of how f(x; m, s) changes -
shape as s goes from 2 to
0.2

Movies are made from a (large) set of individual plots

o Goal: make a movie showing how f(x) varies in shape as s
decreases

@ Idea: put many plots (for different s values) together
(exactly as a cartoon movie)

@ Very important: fix the y axis! Otherwise, the y axis always
adapts to the peak of the function and the visual impression
gets completely wrong

Three alternative recipes

© Let the animation run live, without saving any files
o Not possible to pause, slow down etc
@ Loop over all data values, plot and make a hardcopy (file) for
each value, combine all hardcopies to a movie
o Requires separate software (for instance ImageMagick) to see
the animation
© Use the 'Animate’ function in 'matplotlib’

o Plays the animation five
o Relies on external software to save a movie file

Alt. 1. General idea

@ Fix the axes!
@ Use a 'for'-loop to loop over s-values

o Compute new y-values and update the plot for each run
through the loop

Alt. 1: Complete code

from matplotlib.pyplot import *
from numpy import *

def f(x, m, s):
return (1.0/(sqrt(2xpi)*s))*exp(-0.5%((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)

x = linspace(m -3*s_start, m + 3*s_start, 1000)
f is maz for z=m (smaller s gives larger maz value)
max_f = £f(m, m, s_stop)

y = f(x,m,s_stop)

lines = plot(x,y) #Returns a list of line objects!
axis([x[0], x[-1], -0.1, max_f])

xlabel('x"')

ylabel('f')

for s in s_values:
y = f(x, m, s)
lines[0] .set_ydata(y) #update plot data and redraw
draw()
pause (0.1)

Alt. 2: General idea

@ Same 'for’-loop as alternative 1

@ Use 'printf'-formatting to generate a unique file name for each
plot

@ Save file

Alt. 2: Complete code

from matplotlib.pyplot import *
from numpy import *

def f(x, m, s):
return (1.0/(sqrt(2xpi)*s))*exp(-0.5%((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)

x = linspace(m -3*s_start, m + 3*s_start, 1000)
max_f = f(m, m, s_stop)

y = f(x,m,s_stop)
lines = plot(x,y)
axis([x[0], x[-1], -0.1, max_£f])

frame_counter = 0
for s in s_values:
y = f(x, m, s)
lines[0] .set_ydata(y)
draw()
savefig('tmp_%04d.png' ’ frame_counter) #unique filename
frame_counter += 1

How to combine plot files to a movie (video file)

We now have a lot of files:
tmp_0000.png tmp_0001.png tmp_0002.png ...

We use some program to combine these files to a video file:

@ convert for animated GIF format (if just a few plot files)

e ffmpeg (or avconv) for MP4, WebM, Ogg, and Flash formats

Make and play animated GIF file

Tool: convert from the ImageMagick software suite.
Unix command:

Terminal> convert -delay 20 tmp_*.png movie.gif
Delay: 30/100 s, i.e., 0.5 s between each frame.
Play animated GIF file with animate from ImageMagick:

Terminal> animate movie.gif

or open the file in a browser.

Alt. 3: General idea

@ Make two functions:
o One for initialization of plot
e One that updates the plot for each frame
@ Make a list or array of the argument that changes (here s)

@ Pass both functions and the list as arguments to the function
AnimateFunc

Alt. 3: Complete code

from numpy import *
from matplotlib.pyplot import *
from matplotlib.animation import FuncAnimation

def f(x, m, s):
return (1.0/(sqrt(2xpi)*s))*exp(-0.5%((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2

s_values = np.linspace(s_start, s_stop, 30)

x = np.linspace(m -3*s_start, m + 3*s_start, 1000)

max_f = f(m, m, s_stop)

lines = plot([],[]) #empty plot to create the lines object

def init():
axis([x[0], x[-1], -0.1, max_f])
lines[0] .set_xdata(x)
return lines

def update(frame) :
y = £(x, m, frame)
lines[0].set_ydata(y)
return lines

ani = FuncAnimation(gcf(), update, frames=s_values,
init_func=init, blit=True)

ani.save('test.gif')

show ()

Notes on making movies

e Making actual movie files require external software such as
ImageMagick or ffmpeg

@ The software may be tricky to install (simple recipes exist, but
don't always work)

@ For the animation assignments in this course, you do not have
to make movie files. You either:

o Use Alt 1 or Alt 3 to make the animation run live
o Use Alt 2 to create a lot of image files

@ If you can also make the movie files this is great, but it will
not be required

Making your own modules

We have frequently used modules like math and sys:

from math import log
r = log(6) # call log function in math module

import sys
x = eval(sys.argv[1]) # access list argv in sys module

Characteristics of modules:
o Collection of useful data and functions

(later also classes)

@ Functions in a module can be reused in many different
programs

@ If you have some general functions that can be handy in more
than one program, make a module with these functions

@ It's easy: just collect the functions you want in a file, and
that's a module!

Case on making our own module

Here are formulas for computing with interest rates:

A=A (14+—P)" 1
- °(+360-100)’ (1)
A —A(1+L)_" 2)
0= 360100/

In A
n:$, (3)

In (1 + 35e105)

p = 360 - 100 (<2)>1/n — 1> : (4)

Ao: initial amount, p: percentage, n: days, A: final amount

We want to make a module with these four functions.)

First we make Python functions for the formuluas

from math import log as 1n

def present_amount(AO, p, n):
return AOx(1 + p/(360.0%100))**n

def initial_amount(A, p, n):
return A*(1 + p/(360.0%100))%**(-n)

def days(AO, A, p):
return ln(A/AO)/ln(l + p/(360.0%100))

def annual_rate(AO, A, n):
return 360*100*%((A/A0)**(1.0/n) - 1)

Then we can make the module file

@ Collect the 4 functions in a file interest.py

o Now interest.py is actually a module interest (!)

Example on use:
How long time does it take to double an amount of money?

from interest import days
AO =1; A=2; p=25

n = days(AO, 2, p)

years = n/365.0

print ('Money has doubled after %.1f years' 7 years)

Adding a test block in a module file

@ Module files can have an if test at the end containing a test
block for testing or demonstrating the module

@ The test block is not executed when the file is imported as a
module in another program

@ The test block is executed only when the file is run as a
program

if name == '__main__': # this test defineds the test block

<block of statements>

Test blocks are often collected in functions

We can put the test in a real test function, and call it from the test
block:

def test_all_functions():

Define compatible values

A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730

Given three of these, compute the remaining one

and compare with the correct value (in parenthesis)

A_computed = present_amount (A0, p, n)

AO_computed = initial_amount(A, p, n)

n_computed = days(AO, A, p)

p_computed = annual_rate(AO, A, n)

def float_eq(a, b, tolerance=1E-12):
"""Return True if a == b within the tolerance."""
return abs(a - b) < tolerance

success = float_eq(A_computed, A) and \
float_eq(AO_computed, AO) and \
float_eq(p_computed, p) and \
float_eq(n_computed, n)
assert success # could add message here if desired
if name == '__main__"':

test_all_functions()

How can Python find our new module?

@ If the module is in the same folder as the main program,
everything is simple and ok

@ Home-made modules are normally collected in a common
folder, say /Users/hpl/lib/python/mymods

@ In that case Python must be notified that our module is in
that folder

Technique 1: add folder to PYTHONPATH in .bashrc:
export PYTHONPATH=$PYTHONPATH:/Users/hpl/1lib/python/mymods

Technique 2: add folder to sys.path in the program:
sys.path.insert (0, '/Users/hpl/lib/python/mymods')

Technique 3: move the module file in a directory that Python
already searches for libraries.

