
Ch.8.1-8.3: Random numbers and Monte Carlo
simulation

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Nov 15, 2017

Plan for this week

Wednesday November 15:
Exer E.21, E.22
Random numbers and games
Exer 8.1, 8.5, (8.16)

Friday November 17:
Vector ODEs (Systems of ODEs)
A class hierarchy of ODE solvers
Disease modeling (final project)

Random numbers are used to simulate uncertain events

Deterministic problems
Some problems in science and technology are desrcribed by
“exact” mathematics, leading to “precise” results
Example: throwing a ball up in the air (y(t) = v0t − 1

2gt
2)

Stochastic problems
Some problems appear physically uncertain
Examples: rolling a die, molecular motion, games
Use random numbers to mimic the uncertainty of the
experiment.

Random numbers are used to simulate uncertain events

Deterministic problems
Some problems in science and technology are desrcribed by
“exact” mathematics, leading to “precise” results
Example: throwing a ball up in the air (y(t) = v0t − 1

2gt
2)

Stochastic problems
Some problems appear physically uncertain
Examples: rolling a die, molecular motion, games
Use random numbers to mimic the uncertainty of the
experiment.

Random numbers are used to simulate uncertain events

Deterministic problems
Some problems in science and technology are desrcribed by
“exact” mathematics, leading to “precise” results
Example: throwing a ball up in the air (y(t) = v0t − 1

2gt
2)

Stochastic problems
Some problems appear physically uncertain
Examples: rolling a die, molecular motion, games
Use random numbers to mimic the uncertainty of the
experiment.

Drawing random numbers

Python has a random module for drawing random numbers.
random.random() draws random numbers in [0, 1):
>>> import random
>>> random.random()
0.81550546885338104
>>> random.random()
0.44913326809029852
>>> random.random()
0.88320653116367454

Notice
The sequence of random numbers is produced by a deterministic algorithm -
the numbers just appear random.

Distribution of random numbers

random.random() generates random numbers that are
uniformly distributed in the interval [0, 1)
random.uniform(a, b) generates random numbers uniformly
distributed in [a, b)

“Uniformly distributed” means that if we generate a large set
of numbers, no part of [a, b) gets more numbers than others

Distribution of random numbers visualized
N = 500 # no of samples
x = range(N)
y = [random.uniform(-1,1) for i in x]
import matplotlib.pyplot as plt
plt.plot(x, y, '+')
plt.show()

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400 450

Vectorized drawing of random numbers

random.random() generates one number at a time
numpy has a random module that efficiently generates a
(large) number of random numbers at a time

from numpy import random
r = random.random() # one no between 0 and 1
r = random.random(size=10000) # array with 10000 numbers
r = random.uniform(-1, 10) # one no between -1 and 10
r = random.uniform(-1, 10, size=10000) # array

Vectorized drawing is important for speeding up programs!
Possible problem: two random modules, one Python "built-in"
and one in numpy (np)
Convention: use random (Python) and np.random

random.uniform(-1, 1) # scalar number
import numpy as np
np.random.uniform(-1, 1, 100000) # vectorized

Drawing integers

Quite often we want to draw an integer from [a, b] and not a
real number
Python’s random module and numpy.random have functions
for drawing uniformly distributed integers:

import random
r = random.randint(a, b) # a, a+1, ..., b

import numpy as np
r = np.random.randint(a, b+1, N) # b+1 is not included
r = np.random.random_integers(a, b, N) # b is included

Example: Rolling a die

Problem
Any no of eyes, 1-6, is equally probable when you roll a die
What is the chance of getting a 6?

Solution by Monte Carlo simulation:

Rolling a die is the same as drawing integers in [1, 6].
import random
N = 10000
eyes = [random.randint(1, 6) for i in range(N)]
M = 0 # counter for successes: how many times we get 6 eyes
for outcome in eyes:

if outcome == 6:
M += 1

print('Got six %d times out of %d' % (M, N))
print('Probability:', float(M)/N)

Probability: M/N (exact: 1/6)

Properties of Monte Carlo simulation

What is the probability that a certain event A happens?
Simulate N events and count how many times M the event A
happens. The probability of the event A is then M/N (as N →∞).

Not very useful for simple cases (like rolling a single die)
Extremely useful for complex cases, where analytical solutions
are hard or impossible to find
Requires large N for accurate results (103-106 depending on
application)

Example: Rolling a die; vectorized version

import sys, numpy as np
N = int(sys.argv[1])
eyes = np.random.randint(1, 7, N)
success = eyes == 6 # True/False array
M = np.sum(success) # treats True as 1, False as 0
print('Got six %d times out of %d' % (M, N))
print('Probability:', float(M)/N)

Important!

Use sum from numpy and not Python’s built-in sum function! (The
latter is slow, often making a vectorized version slower than the
scalar version.)

How accurate and fast is Monte Carlo simulation?
Programs:

single_die.py: loop version
single_die_vec.py: vectorized version

Terminal> time python single_die.py 100
Probability: 0.12
real 0m0.042s

Terminal> time python single_die.py 1000
Probability: 0.16
real 0m0.047s

Terminal> time python single_die.py 10000
Probability: 0.1636
real 0m0.058s

Terminal> time python single_die.py 1000000
Probability: 0.16696
real 0m1.348s

Terminal> time python single_die_vec.py 1000000
Probability: 0.167253
real 0m0.231s

Debugging programs with random numbers requires fixing
the seed of the random sequence

Debugging programs with random numbers is difficult because
the numbers produced vary each time we run the program
For debugging it is important that a new run reproduces the
sequence of random numbers in the last run
This is possible by fixing the seed of the random module:
random.seed(121) (int argument)

>>> import random
>>> random.seed(2)
>>> ['%.2f' % random.random() for i in range(7)]
['0.96', '0.95', '0.06', '0.08', '0.84', '0.74', '0.67']
>>> ['%.2f' % random.random() for i in range(7)]
['0.31', '0.61', '0.61', '0.58', '0.16', '0.43', '0.39']

>>> random.seed(2) # repeat the random sequence
>>> ['%.2f' % random.random() for i in range(7)]
['0.96', '0.95', '0.06', '0.08', '0.84', '0.74', '0.67']

By default, the seed is based on the current time

Summary of Monte Carlo simulation

The idea of MC simulation is very simple:
Repeat the experiment N times (i.e. a for-loop)
Count number of successes M
Probability of success is p = M/N

Use the random or numpy.random modules for drawing
random numbers

