Ch.8.1-8.3: Random numbers and Monte Carlo

simulation

2

Joakim Sundnes?: Hans Petter Langtangen?!+

Simula Research Laboratory!

University of Oslo, Dept. of Informatics®

Nov 15, 2017

Plan for this week

o Wednesday November 15:

o Exer E.21, E.22
e Random numbers and games
o Exer 8.1, 8.5, (8.16)

o Friday November 17:

o Vector ODEs (Systems of ODEs)
o A class hierarchy of ODE solvers
o Disease modeling (final project)

Random numbers are used to simulate uncertain events

Random numbers are used to simulate uncertain events

Deterministic problems

@ Some problems in science and technology are desrcribed by
“exact” mathematics, leading to “precise”’ results

e Example: throwing a ball up in the air (y(t) = vt — %gt2)

Random numbers are used to simulate uncertain events

Deterministic problems

@ Some problems in science and technology are desrcribed by
“exact” mathematics, leading to “precise”’ results

e Example: throwing a ball up in the air (y(t) = vt — %gt2)

4

Stochastic problems

@ Some problems appear physically uncertain

@ Examples: rolling a die, molecular motion, games

@ Use random numbers to mimic the uncertainty of the
experiment.

Drawing random numbers

Python has a random module for drawing random numbers.
random.random() draws random numbers in [0, 1):

>>> import random

>>> random.random()
0.81550546885338104
>>> random.random()
0.44913326809029852
>>> random.random()
0.88320653116367454

Notice

| \

The sequence of random numbers is produced by a deterministic algorithm -
the numbers just appear random.

Distribution of random numbers

@ random.random() generates random numbers that are
uniformly distributed in the interval [0, 1)

@ random.uniform(a, b) generates random numbers uniformly
distributed in [a, b)

@ “Uniformly distributed” means that if we generate a large set
of numbers, no part of [a, b) gets more numbers than others

Distribution of random numbers visualized

=
I

500 # mno of samples

x = range(N)

y = [random.uniform(-1,1) for i in x]
import matplotlib.pyplot as plt
plt.plot(x, y, '+')

plt.show()

+
o+
++
¥

-
05k ¥+ o+ Y 7o

Vectorized drawing of random numbers

@ random.random() generates one number at a time

@ numpy has a random module that efficiently generates a
(large) number of random numbers at a time

from numpy import random

r = random.random() # one no between 0 and 1

r = random.random(size=10000) # array with 10000 numbers
r = random.uniform(-1, 10) # one no between -1 and 10
r = random.uniform(-1, 10, size=10000) # array

@ Vectorized drawing is important for speeding up programs!

@ Possible problem: two random modules, one Python "built-in"
and one in numpy (np)
e Convention: use random (Python) and np.random

random.uniform(-1, 1) # scalar number
import numpy as np
np.random.uniform(-1, 1, 100000) # vectorized

Drawing integers

@ Quite often we want to draw an integer from [a, b] and not a
real number

@ Python's random module and numpy.random have functions
for drawing uniformly distributed integers:

import random
r = random.randint(a, b) # a, a+1, ..., b

import numpy as np
r = np.random.randint(a, b+1, N) # b+l is not included
r = np.random.random_integers(a, b, N) # b is included

nn

Example: Rolling a die

Problem
@ Any no of eyes, 1-6, is equally probable when you roll a die

@ What is the chance of getting a 67

Solution by Monte Carlo simulation:

Rolling a die is the same as drawing integers in [1, 6].

import random
N = 10000
eyes = [random.randint(l, 6) for i in range(N)]
M =0 # counter for successes: how many times we get 6 eyes
for outcome in eyes:

if outcome == 6:

M+=1

print('Got six %d times out of %d' % (M, N))
print ('Probability:', float(M)/N)

Probability: M/N (exact: 1/6)

Properties of Monte Carlo simulation

What is the probability that a certain event A happens?

Simulate N events and count how many times M the event A
happens. The probability of the event A is then M/N (as N —)

v

@ Not very useful for simple cases (like rolling a single die)

@ Extremely useful for complex cases, where analytical solutions
are hard or impossible to find

@ Requires large N for accurate results (103-10° depending on
application)

Example: Rolling a die; vectorized version

import sys, numpy as np

N = int(sys.argv[il)

eyes = np.random.randint(l, 7, N)

success = eyes == # True/False array

M = np.sum(success) # treats True as 1, False as 0
print('Got six %d times out of %d' % (M, N))
print('Probability:', float(M)/N)

| \

Important!

Use sum from numpy and not Python's built-in sum function! (The
latter is slow, often making a vectorized version slower than the
scalar version.)

How accurate and fast is Monte Carlo simulation?

Programs:

@ single_die.py: loop version

@ single_die_vec.py: vectorized version

Terminal> time python single_die.py 100
Probability: 0.12
real OmO0.042s

Terminal> time python single_die.py 1000
Probability: 0.16
real OmO.047s

Terminal> time python single_die.py 10000
Probability: 0.1636
real OmO.058s

Terminal> time python single_die.py 1000000
Probability: 0.16696
real Om1.348s

Terminal> time python single_die_vec.py 1000000
Probability: 0.167253
real Om0.231s

Debugging programs with random numbers requires fixing

the seed of the random sequence

@ Debugging programs with random numbers is difficult because
the numbers produced vary each time we run the program

@ For debugging it is important that a new run reproduces the
sequence of random numbers in the last run

@ This is possible by fixing the seed of the random module:
random.seed(121) (int argument)

>>> import random

>>> random.seed(2)

>>> [',.2f" 7, random.random() for i in range(7)]
['0O.96', '0.95', '0.06', '0.08', '0.84', '0.74', '0.67']
>>> ['},.2f"' %, random.random() for i in range(7)]
['0.31', '0.61', 'O.61', '0.58', '0.16', '0.43', '0.39']

>>> random.seed(2) # repeat the Tandom sequence
>>> [',.2f" 7, random.random() for i in range(7)]
['0.96', '0.95', '0.06', '0.08', '0.84', '0.74', '0.67']

By default, the seed is based on the current time

Summary of Monte Carlo simulation

@ The idea of MC simulation is very simple:
o Repeat the experiment N times (i.e. a for-loop)
o Count number of successes M
o Probability of success is p = M/N

@ Use the random or numpy .random modules for drawing

random numbers

