
Parameter Estimation and Inverse
Problems
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Parameter Estimation

We have seen how mathematical models can be expressed
in terms of differential equations. For example:

• Exponential growth

r′(t) = ar(t) for t > 0, (1)

r(0) = r0. (2)
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Parameter Estimation

• Logistic growth

r′(t) = ar(t)

(
1−

r(t)
R

)
for t > 0, (3)

r(0) = r0. (4)

• Heat conduction

ut = (kux)x for x ∈ (0,1), t > 0, (5)

u(0, t) = u(1, t) = 0 for t > 0, (6)

u(x,0) = f (x) for x ∈ (0,1). (7)
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Parameter Estimation

In order to use such models we must somehow assign
suitable values to the involved parameters;

• r0 and a in the model for exponential growth,
• ro, a and R in the model for logistic growth,
• and f (x) and k(x) in the model for heat conduction.
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Exponential Growth

• We will consider the estimation of the growth rate a
and the initial condition r0 in the equations for
exponential growth.

• We employ the notation

r(t;a,r0) = r0eat (8)
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Exponential Growth

• Total world population from 1950to 1955:

1950 : r(0;a,r0) = 2.555·109

1951 : r(1;a,r0) = 2.593·109

1952 : r(2;a,r0) = 2.635·109

1953 : r(3;a,r0) = 2.680·109

1954 : r(4;a,r0) = 2.728·109

1955 : r(5;a,r0) = 2.780·109
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Exponential Growth

r0 = 2.555·109 (9)

r0ea = 2.593·109 (10)

r0e2a = 2.635·109 (11)

r0e3a = 2.680·109 (12)

r0e4a = 2.728·109 (13)

r0e5a = 2.780·109
. (14)

• Six equations, but only two unknowns; a and r0.
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Cost-functional

Consider the function

J(a,r0) =
1
2

t=5

∑
t=0

(r(t;a,r0)−dt)
2

=
1
2

t=5

∑
t=0

(r0eat
−dt)

2
,

where

d0 = 2.555·109
, d1 = 2.593·109

,

d2 = 2.635·109
, d3 = 2.680·109

,

d4 = 2.728·109
, d5 = 2.780·109

.
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Cost-functional

• J(a,r0) is a sum of quadratic terms which measure the
deviation between the output of the model and the
observation data.

• If J(a,r0) is small, then equations (9)-(14) are
approximately satisfied.

• We thus seek to minimize J;

min
a,r0

J(a,r0).
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Cost-functional

• The first order necessary conditions for a minimum:

∂J
∂a

= 0

∂J
∂r0

= 0
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Cost-functional

• A nonlinear 2×2 system of algebraic equations for a
and r0:

t=5

∑
t=0

(r0eat
−dt)r0teat = 0 (15)

t=5

∑
t=0

(r0eat
−dt)e

at = 0 (16)
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Cost-functional

• Note that the standard output least squares form of the
present problem is;

min
a,r0

[
1
2

t=5

∑
t=0

(r(t;a,r0)−dt)
2

]

subject to the constraints

r′(t) = ar(t) for t > 0, (17)

r(0) = r0. (18)

• Due to the formula (8) available for the solution of
(17)-(18), it can be analyzed in the manner presented
above.

Lectures INF-MAT 2351 – p. 12



A simpler problem

• Instead of seeking to compute both the growth rate a
and the initial condition r0 we might consider a
somewhat simpler, but less sophisticated, approach.

• Choose
r0 = 2.555·109

.

• Estimate a by defining an objective function only
involving the observation data from 1951to 1955;

G(a) =
1
2

t=5

∑
t=1

(2.555·109eat
−dt)

2
. (19)

Lectures INF-MAT 2351 – p. 13



A simpler problem

• The necessary condition for a minimum is

G′(a) = 0.

• This leads to the equation

t=5

∑
t=1

(2.555·109eat
−dt)2.555·109teat = 0, (20)

which must be solved to determine an optimal value for
a.
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A simpler problem

• In this case, the standard output least squares form is;

min
a

[
1
2

t=5

∑
t=1

(r(t;a)−dt)
2

]

subject to the constraints

r′(t) = ar(t) for t > 0,

r(0) = 2.555·109
.
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Backwards heat equation

• Assume that a substance in an industrial process must
have a prescribed temperature distribution, say g(x), at
time T in the future.

• The substance must be introduced/implanted to the
process at time t = 0. (This could typically be the case
in various molding process or in steel casting).

• What should the temperature distribution f (x) at time
t = 0 be in order to assure that the temperature is g(x)
at time T?
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Backwards heat equation

• Consider a medium with constant heat conductivity
k(x) = 1 for all x, occupying the unit interval.

• Determine the initial condition f = f (x) such that the
solution u = u(x, t; f ) of

ut = uxx for x ∈ (0,1), t > 0, (21)

u(0, t) = u(1, t) = 0 for t > 0, (22)

u(x,0) = f (x) for x ∈ (0,1), (23)

is such that

u(x,T ; f ) = g(x) for all x ∈ (0,1).
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Backwards heat equation

• g(x) is our observation data, and the output least
squares formulation of the problem becomes;

min
f

[∫ 1

0
(u(x,T ; f )−g(x))2 dx

]
(24)

subject to u = u(x, t; f ) satisfying (21)-(23).
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Fourier Analysis

• The solution u(x, t; f ) of (21)-(23) can be written

u(x, t, f ) =
∞

∑
k=1

cke−k2π2t sin(kπx)

where

f (x) =
∞

∑
k=1

ck sin(kπx) for x ∈ (0,1),

• Equation (24) can be expressed in terms of the Fourier
coefficients;

min
c1,c2,...



∫ 1

0

(
∞

∑
k=1

cke−k2π2T sin(kπx)−g(x)

)2

dx


 . (25)
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Fourier Analysis

• Next, we insert the Fourier sine expansion

g(x) =
∞

∑
k=1

dk sin(kπx) for x ∈ (0,1)

of g into (25) and obtain the following form of our
problem

min
c1,c2,...



∫ 1

0

(
∞

∑
k=1

cke−k2π2T sin(kπx)−
∞

∑
k=1

dk sin(kπx)

)2

dx


 .

(26)
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Fourier Analysis



∫ 1

0

(
∞

∑
k=1

cke−k2π2T sin(kπx)−
∞

∑
k=1

dk sin(kπx)

)2

dx


≥ 0

for all choices of c1,c2, . . ..
We can solve (26) by determining c1,c2, . . . such that

cke−k2π2T sin(kπx) = dk sin(kπx) for k = 1,2, . . . ,

which is satisfied if

ck = ek2π2T dk for k = 1,2, . . . .
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Fourier Analysis

• The solution f (x) of (24) is

f (x) =
∞

∑
k=1

ek2π2T dk sin(kπx) for x ∈ (0,1),

where

g(x) =
∞

∑
k=1

dk sin(kπx) for x ∈ (0,1).
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Stability

• From a mathematical point of view, one might argue
that the backwards heat equation is a simple problem
since an analytical solution is obtainable.

• On the other hand, the problem itself has an
undesirable property.

• The heat distribution f (x) at time t = 0 is determined by
multiplying the Fourier coefficients of g(x) by factors on
the form ek2π2T .
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Stability

• These factors are very large, even for moderate k, e.g.
with T = 1;

eπ2
≈ 1.93·104

,

e22π2
≈ 1.40·1017

,

e32π2
≈ 3.77·1038

.

• If T = 1 and g(x) = sin(3πx), then the solution of the
backwards heat equation is

f (x) = e32π2
sin(3πx)≈ 3.77·1038sin(3πx).
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Stability

• If a very small amount of noise is added to g, say

ĝ(x) = g(x)+10−20sin(3πx) = (1+10−20)sin(3πx),

then the corresponding solution f̂ of (24) changes
dramatically, i.e.

f̂ (x)= (1+10−20)e32π2
sin(3πx)≈ f (x)+3.77·1018sin(3πx).
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Stability

• The problem is extremely unstable; very small changes
in the observation data g can cause huge changes in
the solution f of the problem:

ĝ(x)−g(x) = 10−20sin(3πx)

f̂ (x)− f (x) = 3.77·1018sin(3πx)
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Stability

• One can argue that it is almost impossible to estimate
the temperature distribution backwards in time, only
using the present temperature and the heat equation.

• Further information is needed.
• This has lead mathematicians to develop various

techniques for incorporating a priori data, for example
that f (x) should be almost constant.

• More precisely, a number of methods for approximating
unstable problems with stable equations have been
proposed, commonly referred to as regularization
techniques.
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Stability

• Do the mathematical considerations presented above
agree with our practical experiences with heat
conduction?

• Is it possible to track the temperature distribution
backwards in time in the room you are sitting?

• What kind of information do you need to do so?
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Estimating the heat conductivity

• The examples discussed above are rather simple since
explicit formulas for the solutions of the involved
differential equations are known.

• This is not always the case, and we will now briefly
consider such a problem.

• Assume that one wants to use surface measurements
of the temperature to compute a possibly non-constant
heat conductivity k = k(x) inside a medium.
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Estimating the heat conductivity

• With our notation, the output least squares formulation
of this task is;

min
k

[∫ T

0
(u(0, t;k)−h1(t))

2 dt +
∫ T

0
(u(1, t;k)−h2(t))

2 dt

]

subject to u = u(x, t;k) satisfying

ut = (kux)x for x ∈ (0,1), t > 0,

k(0)ux(0, t) = 0 for t > 0,

k(1)ux(1, t) = 0 for t > 0,

u(x,0) = f (x) for x ∈ (0,1).
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Estimating the heat conductivity

• This is a very difficult problem.
• To solve it, a number of mathematical and

computational techniques developed throughout the
last decades must be employed.

• This exceeds the ambitions of the present text, but we
encourage the reader to carefully evaluate their
understanding of the output least squares method by
formulating such an approach for a problem involving,
e.g., a system of ordinary differential equations.
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