
Software Testing Techniques

Prof Lionel BriandProf. Lionel Briand
Simula Research Laboratory

Oslo NorwayOslo, Norway
briand@simula.no

© Lionel Briand 2009
1

White-Box Testing:
Control Flow Analysis

© Lionel Briand 2009
2

Control Flow Coverage (CFG) Control Flow Coverage (CFG) -- ExampleExample

Greatest common divisor (GCD) program

read(x);
read(y); x ≠ y

while x ≠ y loop
if x>y then

x := x – y; x<=y x > y
x = y

x := x y;
else

y := y – x;
end if;

end loop;
d

© Lionel Briand 2009
3

gcd := x;

Control Flow Coverage (CFG) Control Flow Coverage (CFG) -- DefinitionsDefinitions

Directed graphDirected graph
Nodes are blocks of sequential
statements x ≠ y

Edges are transfers of control
Edges may be labeled with

x<=y x > y
x = y

predicate representing the condition
of control transfer
There are several conventions forThere are several conventions for
flow graph models with subtle
differences (e.g., hierarchical CFGs,

t CFG)

© Lionel Briand 2009
4

concurrent CFGs)

Basics of CFG: BlocksBasics of CFG: Blocks

If-Then-Else While loop Switch

© Lionel Briand 2009
5

UML Activity Diagrams: Can also be used toUML Activity Diagrams: Can also be used toUML Activity Diagrams: Can also be used to UML Activity Diagrams: Can also be used to
model CFGsmodel CFGs

[year < 1]

[month in (1,3,5,7,10,12)]

throw1

[(, , , , ,)] n=31

n=30[month in (4,6,9,11)]

[month == 2] [leap(year)]

throw2 n=29

return

n=28

© Lionel Briand 2009
6

Testing Coverage of Control flow

As a testing strategy, we may want to ensure that testing
exercises control flow:

Statement/Node CoverageStatement/Node Coverage
Edge Coverage
Condition Coverage

x ≠ y

Condition Coverage
Path Coverage

Discussed in detail next

x<=y x > y
x = y

Discussed in detail next…

© Lionel Briand 2009
7

Adequacy Criterion

Way to define a test objective
Given a criterion C for a model M

The coverage ratio of a test set T is the proportion
of the elements in M defined by C covered by the
test set.
A test set T is said to be adequate for C, or simply
C-adequate, when the coverage ratio achieves
100% for criterion C.

Example:
M is the control flow graph of a function

© Lionel Briand 2009
8

C is the set of all the edges in the graph

Types of control flow coverage

Statement/Node Coverage
Edge Coverage
Condition Coverage
Path Coverage

© Lionel Briand 2009
9

Statement/Node Coverage

Hypothesis: Faults cannot be discovered ifHypothesis: Faults cannot be discovered if
the parts containing them are not executed
Statement coverage criteria: Equivalent to x ≠ y

covering all nodes in CFG
Executing a statement is a weak guarantee
of correctness but easy to achieve

x<=y x > y
x = y

of correctness, but easy to achieve
In general, several inputs execute the same
statements
An important question in practice is: how can
we minimize (the number of) test cases so
we can achieve a given statement coverage

© Lionel Briand 2009
10

we can achieve a given statement coverage
ratio (e.g., 90%)?

Statement/Node Coverage:Statement/Node Coverage:
Incompleteness

Statement coverage may lead to incompleteness
An example:p

if x < 0 then
A negative x would result in the coverage of
all statements.

But not exercising x >= 0 would not cover all

x := -x;
else

But not exercising x > 0 would not cover all
cases (implicit code in italic and gray).

However, doing nothing for the case
0 t t t b d d

null;
end if

x >= 0 may turn out to be wrong and need
to be tested.

© Lionel Briand 2009
11

z := x;

Types of control flow coverage

Statement/Node Coverage
Edge CoverageEdge Coverage
Condition Coverage
Path CoveragePath Coverage

© Lionel Briand 2009
12

Edge CoverageEdge Coverage

Based on the program structure, the control
flow graph (CFG)
Ed it i S l t t t t T x = y

x ≠ y

Edge coverage criterion: Select a test set T
such that, by executing P for each test case
t in T, each edge of P’s control flow graph
i d l

x<=y x > y
x = y

is traversed at least once
Exercise all conditions that govern control
flow of the program with true and falseflow of the program with true and false
values

© Lionel Briand 2009
13

Code Example: Searching for anCode Example: Searching for an
element in a table

counter:= 0;
found := false;
if number of items ≠ 0 then Should have been ≤_ _

counter :=1;
while (not found) and counter < number_of_items loop

if table(counter) = desired_element then_
found := true;

end if;
counter := counter + 1;

end loop;
end if;
if found then write (“the desired element exists in the table”);
else write (“the desired element does not exists in the table”);

© Lionel Briand 2009
14

else write (the desired element does not exists in the table);
end if;

Test SetTest Set
We choose a test set with two test cases:

One table with 0 items and,
A table with 3 items, the second element being the desired one
Size of test set in this case, |T| = 2, | |

For the second test case, the “while” loop body is executed twice, once executing the “if-
then” branch.
The edge coverage criterion is fulfilled and the error is not discovered by the test set
...
while (not found) and counter < number_of_items loop
...
The reason for the above problem?
• Not all possible values of the constituents of the condition in the while loop have

been exercised: counter < number_of_items never set to false
Fault is detected in case when trying to set both to false (item in last position)

© Lionel Briand 2009
15

• Fault is detected in case when trying to set both to false (item in last position)

Types of control flow coverage

Statement/Node Coverage
Edge Coverage
Condition Coverage

CPath Coverage

© Lionel Briand 2009
16

Condition CoverageCondition Coverage
We need to further strengthen the edge coverage (recall theWe need to further strengthen the edge coverage (recall the
possible limitation)
Condition Coverage (CC) Criterion: Select a test set T such that,
by executing P for each element in T each edge of P’s controlby executing P for each element in T, each edge of P s control
flow graph is traversed, and all possible values of the constituents
of compound conditions (defined below) are exercised at least
once
Compound conditions: C1 and C2 or C3 … where Ci’s are
relational expressions or Boolean variables (atomic conditions)
A th i M difi d C diti C (MCC) C it iAnother version: Modified Condition Coverage (MCC) Criterion:
Only combinations of values such that every Ci drives the overall
condition truth value twice (true and false).

© Lionel Briand 2009
17

Examples are next…

Condition Coverage: Condition Coverage: Uncover Uncover hiddenhidden edgesedges

Two equivalent programsq p g
• though you would write the left one

if c1 and c2 then
t

if c1 then
if 2 thst;

else
sf;

end if;

if c2 then
st;

else
sf;

end if;

Edge coverage

end if;
else

sf;
end if;

• would not compulsorily cover the “hidden” edges in the right one,
(e.g., the 1st else) This is where C2 = false

• Example: C2 = false might not be covered

© Lionel Briand 2009
18

Condition coverage would cover C2 = false

Another ExampleAnother Example
The international standard DO-178B for Airborne Systems Certification
(since 1992) requires testing the airborne software systems with
modified condition coverage.
Example : A ∧ (B ∨ C), e.g., in a while loop, let’s look at its truth table…

Deriving a modified condition
it i (MCC) T t it T k

ABC Results Corresponding negate Case

1 TTT T A (5) criterion (MCC) Test suite: Take a
pair for each constituent:

• A: (1,5), or (2,6), or (3,7)
• B: (2,4)

()

2 TTF T A (6), B (4)

3 TFT T A (7), C (4)

4 TFF F B (2) C (3) (,)
• C: (3,4)

Two minimal sets to cover the MCC:
• (2,3,4,6) or (2,3,4,7)

That is 4 test cases instead of 8

4 TFF F B (2), C (3)

5 FTT F A (1)

6 FTF F A (2)

© Lionel Briand 2009
19

That is 4 test cases instead of 8
(1…8) for all possible combinations.

7 FFT F A (3)

8 FFF F -

Types of Control Flow Coverage

Statement/Node Coverage
Ed CEdge Coverage
Condition Coverage
P th CPath Coverage

© Lionel Briand 2009
20

Path CoveragePath Coverage

Path Coverage Criterion: Select a test set TPath Coverage Criterion: Select a test set T
such that, by executing P for each test case t
in T, all paths leading from the initial to the
final node of P’s control flow graph are x ≠ yfinal node of P s control flow graph are
traversed
In practice, however, the number of paths is
too large if not infinite (e g when we have

x<=y x > y
x = y

too large, if not infinite (e.g., when we have
loops)
Some paths are infeasible (e.g., not practical
given the system’s business logic)given the system s business logic)
Sometime, it is important to determine “critical
paths”, leading to more system load, security
i t i t

© Lionel Briand 2009
21

intrusions, etc.

Path Coverage - Example

if x ≠ 0 thenif x ≠ 0 then
y := 5;

else
Let us compare how the following two
test sets cover this CFG:

T

F

[x- 0]

z := z – x;
end if;
if > 1 th

T1 (test set) =

{TC11:<x=0, z =1>,

TC12:<x =1, z=3>}if z > 1 then
z := z / x;

else

TC12: x 1, z 3 }

T2 =

T
F

[z>1]

z := 0;
end if;

{TC21:<x=0, z =3>,

TC22:<x =1, z=1>}

© Lionel Briand 2009
22

Path Coverage – ExamplePath Coverage Example
T1’s coverage

if x ≠ 0 then
y := 5;

else

T1’s coverage:

T1 (test set) =
{TC11:<x=0 z =1>

T C11T C12 T

F

[x - 0]

else
z := z – x;

end if;

{TC11:<x=0, z =1>,
TC12:<x =1, z=3>}

T1 executes all edges but…!
if z > 1 then

z := z / x;
else

Do you see any testing
issue (hidden paths which
can be sources of failure)?

T
F

[z> 1]

z := 0;
end if;

T1 executes all edges
and all conditions but
does not test risk of
division by 0 (See the

© Lionel Briand 2009
23

division by 0. (See the
red “path”)

Path Coverage – ExamplePath Coverage Example
T2’s coverage

T C21T C22 T [x - 0]
if x ≠ 0 then

y := 5;
T2’s coverage:

T2 =F
y := 5;

else
z := z – x;

d if

T2 =
{TC21:<x=0, z =3>,
TC22:<x =1, z=1>}

T2 would find the problem (testing

T
F

[z> 1]

end if;
if z > 1 then

z := z / x;

T2 would find the problem (testing
the risk of division by 0) by
exercising the remaining possible
flows of control through the
program fragmentelse

z := 0;
end if;

program fragment.

© Lionel Briand 2009
24

Path Coverage - Example

T1 (test set) = {TC11:<x=0, z
=1>, TC12:<x =1, z=3>}

T C21T C22 T

F

[x - 0]
T C11T C12 T

F

[x - 0]

T1 executes all edges but do not
show risk of division by 0

T2 = {TC21:<x=0, z =3>, T [z> 1]
T [z> 1] { , ,

TC22:<x =1, z=1>}

T2 would find the problem by
exercising the remaining

T
F

[]
T

F

[z> 1]

g g
possible flows of control through
the program fragment
Observation:Testing all four paths is

© Lionel Briand 2009
25

T1 ∪ T2 -> all paths covered
Testing all four paths is
required here for find
the fault

Path Coverage: IssuePath Coverage: Issue

P th C C it i S l t t t t TPath Coverage Criterion: Select a test set T
such that, by executing P for each test case t
in T, all paths leading from the initial to the
final node of P’s control flow graph are

x ≠ y
final node of P s control flow graph are
traversed
In practice, however, the number of paths can
b t l if t i fi it (h

x<=y x > y
x = y

be too large, if not infinite (e.g., when we
have loops)
Some paths are infeasible (e.g., contradicting
conditions, not feasible given the system’s
business logic).
Sometime, it is important to determine “critical

© Lionel Briand 2009
26

, p
paths”, leading to more system load, security
intrusions, etc.

Path Coverage - Dealing with LoopsDealing with Loops
In practice however the number of paths can be too large if notIn practice, however, the number of paths can be too large, if not
infinite (e.g., when we have loops) → The size of test suites must
be minimized

A h i ti t t kl thi bl L k f diti th tA heuristic to tackle this problem: Look for conditions that
execute loops

Zero times
A average number of times (statistical criterion)
A maximum number of times

For example, in the array search algorithm (Slide 14)
Skipping the loop (the table is empty)
Executing the loop once or twice and then finding the element

© Lionel Briand 2009
27

Executing the loop once or twice and then finding the element
Searching the entire table without finding the desired element

Path Coverage – Dealing with LoopsPath Coverage Dealing with Loops
Example: Power Function

Program computing Z=X^Y

BEGIN
d (X Y)

read(X,Y)
b ()read (X, Y) ;

W = abs(Y) ;
Z = 1 ;
WHILE (W <> 0) DO

1 W=abs(Y)
Z=1

()
Z = Z * X ;
W = W - 1 ;

END
IF (Y < 0) THEN

2

Z=Z*X
W≠0 W=0

IF (Y < 0) THEN
Z = 1 / Z ;

END
print (Z) ;

3 4

5

Z Z X
W=W-1 Y<0

Y≥0 Z=1/Z

© Lionel Briand 2009
28

END 6print(Z)

Path Coverage – comparison with “all
edges” and “all statements”

All paths
Infeasible path

1 → 2 → 4 → 5 → 6, Why infeasible?
How Y and W relate (W = |Y|).

1
read(X,Y)
W=abs(Y)
Z=1(| |)

Potentially large number of paths (depends on Y)
As many ways to iterate
2 → (3 → 2)* as values of Abs(Y)

2

Z 1

W≠0 W=0() ()
All edges / branches

Two test cases are enough
Y<0 : 1 → 2 → (3 → 2)+ → 4 → 5 → 6

3 4

5

Z=Z*X
W=W-1

W≠0 W 0

Y<0
Y≥0

Z=1/Z
Y<0 : 1 → 2 → (3 → 2)+ → 4 → 5 → 6
Y>0 : 1 → 2 → (3 → 2)* → 4 → 6

All statements

6print(Z)

© Lionel Briand 2009
29

One test case is enough
Y<0 : 1 → 2 → (3 → 2)+ → 4 → 5 → 6

Hierarchy of Coverage CriteriaHierarchy of Coverage Criteria

The subsumption relation between criteria
i t d ith th d lassociated with the same model:

Given a model M, and two criteria C1 and C2 for that
model:model:
C1 subsumes C2 if any C1-adequate test set is also
C2-adequate.
Example: All edges subsumes all nodes in CFG.
If C1 subsumes C2, we assume:

• Satisfying C1 is more expensive (e.g., # of test
cases) than satisfying C2
C1 allows the detection of more faults than C2

© Lionel Briand 2009
30

• C1 allows the detection of more faults than C2

Control Flow Coverage: Deriving InputControl Flow Coverage: Deriving Input
Values

Not all statements are usually reachable in real-world programs
It is not always possible to decide automatically if a statement is It is not always possible to decide automatically if a statement is
reachable and the percentage of reachable statements
When one does not reach a 100% coverage, it is therefore difficult
to determine the reason
Tools are needed to support this activity – and there exist good
tools, e.g., Rose real-time
But the generation of input values from coverage criteria cannotBut the generation of input values from coverage criteria cannot
be fully automated
Control-flow testing is, in general, more applicable to testing in the
small

© Lionel Briand 2009
31

small

G ti CF b d T tGenerating CF-based Tests

T fi d t t i t th t ill t bitTo find test inputs that will execute an arbitrary
statement Q within a program source, the tester must
work backward from Q through the program’s flow of

t l t i t t t tcontrol to an input statement
For simple programs, this amounts to solving a set of
simultaneous inequalities on the input variables of thesimultaneous inequalities on the input variables of the
program, each inequality describing the branch
through one conditional
C diti l b d i l l i blConditionals may be expressed in local variable
values derived from the inputs and those must figure
in the inequalities as well

© Lionel Briand 2009
32

Example

Inequalities:
int z;
scanf(“%d%d”, &x, &y);

Inequalities:
. x> 3
. 2(x+y)=x+y

if (x > 3) {
z = x+y;
y+= x;

x = -y

1 Solution:y+ x;
if (2*z == y) {
/* statement to be covered */

1 Solution:
X = 4
Y= -4

…

© Lionel Briand 2009
33

Problems

The presence of loops and recursion in the code makes itThe presence of loops and recursion in the code makes it
impossible to write and (automatically) solve the inequalities
in general

Each pass through a loop may alter the values of variables
that figure in a following conditional and the number of
passes cannot be determined by static analysis

Coverage may be 100% and the tester may yet miss some
functionalities (omission faults)

© Lionel Briand 2009
34

Black-Box Testing:
S f fDeriving Test Specifications from

System Specifications

© Lionel Briand 2009
35

Basic Principles

Based on the definition of a program’s specification,
as opposed to its structure
The notion of complete coverage can also be
applied to functional (Black-box) testing
Rigorous specifications have another benefit, they
help functional testing, e.g., categorize inputs,
derive expected outputsderive expected outputs
In other words, they help test case generation and
test oracles

© Lionel Briand 2009
36

test oracles

Equivalence Class Testing
Motivation: we would like to have a sense of complete testing and weMotivation: we would like to have a sense of complete testing and we
would hope to avoid redundancy

Equivalence classes: partitions of the input set in which input data have
the same effect on the program (e g the result in the same output)the same effect on the program (e.g., the result in the same output)

Entire input set is covered: completeness

A SUT’s

Disjoint classes: avoid redundancy

Test cases: one element of each equivalence class

A SUT s
input set

tc4tc5

But equivalence classes have to be chosen wisely …

Guessing the likely system behavior might be needed
tc1

tc2

tc3
tc6

© Lionel Briand 2009
37

tc2

Weak/Strong ECT
For an example SUT suppose there are three input AFor an example SUT, suppose there are three input
variables from three domains: A, B, C
A = A1 ∪ A2 ∪ A3 ∪ … ∪ Am where ai∈Ai

B = B ∪ B ∪ B ∪ ∪ B where b B

A

B = B1 ∪ B2 ∪ B3 ∪ … ∪ Bn where bi∈Bi

C = C1 ∪ C2 ∪ C3 ∪ … ∪ Co where ci∈Ci

Weak Equivalence Class Testing: Choosing one
B

variable value form each equivalence class (one ai, bi,
and ci) such that all classes are covered.
Strong Equivalence Class Testing: Is based on the
C t i d t f th titi b t (A B C) iCartesian product of the partition subsets (A×B×C), i.e.,
testing all interactions of all equivalence classes
Examples next…

C

© Lionel Briand 2009
38

Weak ECT Test Cases
For an example SUT, suppose there are three input variables from three
domains: A B Cdomains: A, B, C
A = A1 ∪ A2 ∪ A3 where ai∈Ai

B = B1 ∪ B2 ∪ B3 ∪ B4 where bi∈Bi

C = C1 ∪ C2 where ci∈Ci

Number of WETCs needed=Max size w.r.t. the number of equivalence
classes of {A, B, C}

Test Case A B C

classes of {A, B, C}
4 WETCs are enough.

WETC1 a1 b1 c1

WETC2 a2 b2 c2

© Lionel Briand 2009
39

WETC3 a3 b3 c1

WETC4 a1 b4 c2

Strong ECT (WECT) Test CasesStrong ECT (WECT) Test Cases
Test Case A B C

SETC1 a1 b1 c1
SETC2 a1 b1 c2SETC2 a1 b1 c2
SETC3 a1 b2 c1
SETC4 a1 b2 c2
SETC5 a1 b3 c1
SETC6 a1 b3 c2
SETC7 1 b4 1

|A| (number of equivalence
classes) = 3

SETC7 a1 b4 c1
SETC8 a1 b4 c2
SETC9 a2 b1 c1

SETC10 a2 b1 c2
SETC11 a2 b2 c1

|B| = 4
|C| = 2

SETC12 a2 b2 c2
SETC13 a2 b3 c1
SETC14 a2 b3 c2
SETC15 a2 b4 c1
SETC16 a2 b4 c2
SETC17 a3 b1 c1
SETC18 a3 b1 c2
SETC19 a3 b2 c1
SETC20 a3 b2 c2
SETC21 a3 b3 c1

© Lionel Briand 2009
40

SETC21 a3 b3 c1
SETC22 a3 b3 c2
SETC23 a3 b4 c1
SETC24 a3 b4 c2

Equivalence Class TestingEquivalence Class Testing
NextDate Example
NextDate is a function with three variables: month, day, year. It
returns the date of the day after the input date. Limitation: years 1812-
2012
T t t S if it i t th l t d f th th th t d tTreatment Summary: if it is not the last day of the month, the next date
function will simply increment the day value. At the end of a month, the
next day is 1 and the month is incremented. At the end of the year, both
the day and the month are reset to 1, and the year incremented. Finally,the day and the month are reset to 1, and the year incremented. Finally,
the problem of leap year makes determining the last day of a month
interesting.
From Wikipedia (http://en.wikipedia.org/wiki/Leap years): The Gregorian p (p p g p_y) g
calendar adds a 29th day to February in all years evenly divisible by 4,
except for centennial years (those ending in -00) which are not evenly
divisible by 400. Thus 1600, 2000 and 2400 are leap years but 1700,
1800 1900 2100 2200 and 2300 are not

© Lionel Briand 2009
41

1800, 1900, 2100, 2200 and 2300 are not.
The year 1900 falls in the 1812-2012 period

N tD t Equivalence ClassesEquivalence ClassesNextDate Equivalence ClassesEquivalence Classes
M1 = {month | month has 30 days}
M2 { th | th h 31 d }M2 = {month | month has 31 days}
M3 = {February} (the impact of leap years)

D1 = {day | 1<= day <= 28}
D2 = {29}
D3 = {30}
D4 = {31}

Y1 = {1900}
Y2 = {year | 1812 <= year <= 2012 AND (year != 1900) AND (year mod 4
= 0)}

© Lionel Briand 2009
42

= 0)}
Y3 = {year | (1812 <= year <= 2012 AND year mod 4 != 0)}

NextDateNextDateNextDateNextDate
Weak Equivalence Class Testing (WECT)

Number of WECT test cases=maximum partition size
(D)=4

Test Case ID Month Day Year Output
WETC1 6 14 1900 6/15/1900
WETC2 7 29 1912 7/30/1912
WETC3 2 30 1913 Invalid Input

date
WETC4 6 31 1900 Invalid Input

date

© Lionel Briand 2009
43

NextDateNextDate Strong Equivalence Class Testing (SECT)NextDateNextDate Strong Equivalence Class Testing (SECT)

Number of SECT test cases= partition size (D) x partition size (M) x
partition size (Y) = 3x4x3=36 test cases

Test
Case

ID

Month Day Year Expected Output

SE1 6 14 1900 6/15/1900
SE2 6 14 1912 6/15/1912

SE18 7 29 1913 7/30/1913

SE19 7 30 1900 7/31/1900

SE20 7 30 1912 7/31/1912

SE21 7 30 1913 7/31/1913

p ()

SE2 6 14 1912 6/15/1912
SE3 6 14 1913 6/15/1913
SE4 6 29 1900 6/30/1900
SE5 6 29 1912 6/30/1912
SE6 6 29 1913 6/30/1913

SE22 7 31 1900 8/1/1900

SE23 7 31 1912 8/1/1912

SE24 7 31 1913 8/1/1913

SE25 2 14 1900 2/15/1900

SE7 6 30 1900 7/1/1900
SE8 6 30 1912 7/1/1912
SE9 6 30 1913 7/1/1913
SE10 6 31 1900 ERROR

SE26 2 14 1912 2/15/1912

SE27 2 14 1913 2/15/1913

SE28 2 29 1900 ERROR

SE29 2 29 1912 3/1/1912

SE11 6 31 1912 ERROR
SE12 6 31 1913 ERROR
SE13 7 14 1900 7/15/1900
SE14 7 14 1912 7/15/1912

SE30 2 29 1913 ERROR

SE31 2 30 1900 ERROR

SE32 2 30 1912 ERROR

SE33 2 30 1913 ERROR

© Lionel Briand 2009
44

SE15 7 14 1913 7/15/1913
SE16 7 29 1900 7/30/1900
SE17 7 29 1912 7/30/1912

SE34 2 31 1900 ERROR

SE35 2 31 1912 ERROR

SE36 2 31 1913 ERROR

Equivalence Class TestingEquivalence Class Testing
NextDate Example - Discussion

If error conditions are a high priority, we should extend
strong equivalence class testing to include invalid classes
E i l Cl T ti i i t h i t d tEquivalence Class Testing is appropriate when input data
defined in terms of ranges and sets of discrete values
SECT makes the assumption that the variables areSECT makes the assumption that the variables are
independent – dependencies will generate “error” test cases
Possibly too many of them …
We will discuss the “category-partition” test techniques next
to address this issue

© Lionel Briand 2009
45

Boundary-Value Analysis Motivations
In equivalence class testing, we partition input domains into q g, p p
equivalence classes, on the assumption that the behavior of
the program is “similar” for all input values of a equivalence
classclass
But the above assumption may not be true in all cases as…
Some typical programming errors happen to be at theSome typical programming errors happen to be at the
boundary between different equivalence classes
This is what boundary value testing
focuses on
Simpler but complementary to

© Lionel Briand 2009
46

equivalence class testing

Boundary-Value Analysis: Motivations

Assume a function F, with two variables x1 and x2
(Possibly unstated) boundaries: a <= x1 <= b, c <= x2 <= d
In some programming languages, strong typing allows the
specification of such intervals

• Strong typing enforces checks during conversions between type g yp g g yp
domains to ensure that the value will make sense in the new domain.

In boundary-value analysis (testing) the focus is on the
boundary of the input space for identifying test casesboundary of the input space for identifying test cases
The rationale is that errors tend to occur near extreme
values of input variables

© Lionel Briand 2009
47

Boundary-Value Analysis: : Basic Ideas

Setting values for input variable at their minimum, just
above the minimum, a nominal value, just below their
maximum and at their maximummaximum, and at their maximum.
Convention for the above notions:
• min min+ nom max- maxmin, min+, nom, max , max
• Assuming x1 is an integer: a, a+1, *, b-1, b

A usual strategy for all input variables: Holding the valuesA usual strategy for all input variables: Holding the values
of all but one variable at their nominal values, letting one
variable assume its extreme value

© Lionel Briand 2009
48

• a, c +2<= x2 <= d-2

BVA of Input Domain of Function F
Assume a function F, with two variables x1 and x2

X2

(Possibly unstated) boundaries: a <= x1 <= b, c <= x2 <= d

d

c

© Lionel Briand 2009
49a b

X1

BVA: Test Cases
Test set ={ <x1nom, x2min>, <x1nom, x2min+>, <x1nom, x2nom>, <x1nom,
x2 > <x1 x2 > <x1 x2 > <x1 x2 > <x1x2max->, <x1nom, x2max>, <x1min, x2nom,>, <x1min+, x2nom,>, <x1max-,
x2nom>, <x1max, x2nom>}. Number of test cases=9

X2

d

c

© Lionel Briand 2009
50a b

X1

BVA: General Case and LimitationsGeneral Case and Limitations

A function with n variables will require 4n + 1 test cases
Works well with variables that represent bounded physicalWorks well with variables that represent bounded physical
quantities
No consideration of the nature of the function and the
meaning of variables
An elementary technique that is a extendable to

b t t tirobustness testing

© Lionel Briand 2009
51

BVA: Robustness Testing
In Robustness Testing, we also look at the behavior of the system g, y
when the variable extremes are exceeded with a value slightly
greater than the maximum (max+) and a value slightly less than the
minimum (min-)
This is an extension of boundary-value testing.

X2

d

c

© Lionel Briand 2009
52X1

a b

BVA: Worst Case Testing (WCT)Worst Case Testing (WCT)

Boundary-value analysis makes the common assumption
that failures, most of the time, originate from one fault
Wh t h h th i bl h tWhat happens when more than one variable has an extreme
value?
The idea comes from electronics in circuit analysisThe idea comes from electronics in circuit analysis
Cartesian product of {min, min+, nom, max-, max}
Clearly more thorough than boundary-value analysis, butClearly more thorough than boundary value analysis, but
much more effort: 5n test cases (n: number of variables)
WCT is a good strategy when physical variables have

i t ti d h f il i tl

© Lionel Briand 2009
53

numerous interactions, and where failure is costly

BVA: Worst Case Testing for 2BVA: Worst Case Testing for 2
variables

X2

d

cc

1

© Lionel Briand 2009
54

X1
a b

BVA: Robust Worst Case Testing for 2BVA: Robust Worst Case Testing for 2
variables

X2

d

c

© Lionel Briand 2009
55

X1
a b

Category-Partition Testing StepsSteps

The system is divided into individual “functions” that can be
independently tested (e.g., use cases)
The method identifies the parameters of each “function” and, for each
parameter, identifies distinct categories
Categories are major properties or characteristics for each parameter
Besides parameters, environment characteristics, under which the es des pa a ete s, e o e t c a acte st cs, u de c t e
function operates (characteristics of the system state), can also be
considered
The categories are further subdivided into choices in the same way as g y
equivalence partitioning is applied (possible “values”)
Encompasses Equivalence Class Partitioning

© Lionel Briand 2009
56

Category-Partition Testing: A Small: A SmallCategory Partition Testing: A Small : A Small
ExampleExample
Function: Sorting an array
Characteristics (Categories):

• Length of array (Len)
• Type of elements
• Max value
• Min value
• Position of the max value (Max pos)
• Position of the min value

© Lionel Briand 2009
57

Choices for Max pos: {1, 2..Len-1, Len}

Category-Partition Testing Steps (II)Steps (II)

The constraints operating between choices are then
identified, i.e., how the occurrence of one choice
can affect the existence of anothercan affect the existence of another

• E.g., in the array sorting example, if Len = 0, then the
rest does not matter

Test frames (or test specifications) are then
generated which are defined as the allowable
combinations of choices in the categories
Test frames are then converted into test data

© Lionel Briand 2009
58

Examples next…

Category-Partition Testing: An: AnCategory Partition Testing: An : An
ExampleExample

Specification: The program prompts the user for a
positive integer in the range 1 to 20 and then for a
string of characters of that lengthstring of characters of that length.
The program then prompts for a character and
returns either the position in the string at which thereturns either the position in the string at which the
character was first found or a message indicating
that the character was not present in the string.
The user has the option to search for more
characters.

© Lionel Briand 2009
59

Parameters and CategoriesParameters and Categories
Three parameters: integer x (length) the string aThree parameters: integer x (length), the string a,
and the character c
For the length x, an interesting category is whetherFor the length x, an interesting category is whether
it is “in-range” according to the specification (1-20)
For string a, an interesting category is its length g , g g y g
For character c, an interesting category is the
location of c in string ag
Choosing categories is based on understanding the
specifications and the behavior of the software

© Lionel Briand 2009
60

under test - This is not a mechanical task

ChoicesChoices
For Integer x:For Integer x:

• out-of-range: 0, 21
• in-range: 1, 2-19, 20

For String a:
• minimal, maximal, intermediate length

• 1, 2-19, 20

For Character c:
• first, middle, last, does not occur

Note: should have more than one choice in each category

© Lionel Briand 2009
61

Combine boundary analysis, robustness and equivalence
class partitioning

Test Specifications with ConstraintsTest Specifications with Constraints
x (length):
1) 0 [error]1) 0 [error]
2) 1 [property stringOk, MinLength]
3) 2-19 [property stringOk, MidLength]
4) 20 [property stringOk MaxLength]

independent

C
ho

ic
es

4) 20 [property stringOk, MaxLength]
5) 21 [error]
a (string):
1) Of length 1 [if stringOk and MinLength] d d t

C
es 1) Of length 1 [if stringOk and MinLength]

2) Of length 2-19 [if stringOk and MidLength]
3) Of length 20 [if stringOk and MaxLength]
c (character):

dependent

C
ho

ic
e

c (character):
1) At first position in string [if stringOk]
2) At last position in string [if stringOk and not MinLength]
3) In middle of string [if stringOk and not MinLength]C

ho
ic

es

© Lionel Briand 2009
62

3) In middle of string [if stringOk and not MinLength]
4) Not in string [if stringOk]

C

Specifying constraints among choicesSpecifying constraints among choices

Properties and Selectors are associated with choicesProperties, and Selectors are associated with choices

Category A
3 properties

Category A
ChoiceA1 [property X, Y, Z]
ChoiceA2

Category B
ChoiceB1
Ch i B2 [if X d Z]

A selector

ChoiceB2 [if X and Z]

E g in the above abstract example ChoiceA2 and

© Lionel Briand 2009
63

E.g., in the above abstract example, ChoiceA2 and
ChoiceB2 would not be combined into a test frame

Special Constraints
[Error][]

• It is assumed that if the parameter or environment variable has
this particular choice, any call of the function using that choice
will result in the same error.

• A choice marked with [Error] is not combined with choices in the
other categories to create test frames.

• During the test, the tester can set the test’s other parameters and g
environment conditions at will.

[Single]
• This notation is intended to describe special, unusual, orThis notation is intended to describe special, unusual, or

redundant conditions that do not have to be combined with all
possible choices, e.g., 1900 in NextDate().

• A judgment by the tester that the marked choice can be

© Lionel Briand 2009
64

adequately tested with only one test case

Test Frames and Test CasesTest Frames and Test Cases
x (length):
1) 0 [error (out of range)]12 test cases. The number 1) 0 [error (out of range)]
2) 1 [property stringOk, MinLength]
3) 2-19 [property stringOk, MidLength]
4) 20 [property stringOk, MaxLength]
5) 21 [error (out of range)]
a (string):

depends on the inter-choice
constraint dependencies

x1 x = 0
x2a1c1 x = 1, a = ‘A’, c = ‘A’
x2a1c4 x = 1, a = ‘A’, c = ‘B’

1) Of length 1 [if stringOk and MinLength]
2) Of length 2-19 [if stringOk and MidLength]
3) Of length 20 [if stringOk and MaxLength]
c (character):
1) At first position in string [if stringOk]
2) At l t iti i t i [if t i Ok d t Mi L th]

x3a2c1 x = 7, a = ‘ABCDEFG’, c = ‘A’
x3a2c2 x = 7, a = ‘ABCDEFG’, c = ‘G’
x3a2c3 x = 7, a = ‘ABCDEFG’, c = ‘D’

2) At last position in string [if stringOk and not MinLength]
3) In middle of string [if stringOk and not MinLength]
4) Not in string [if stringOk]

x3a2c4 x = 7, a = ‘ABCDEFG’, c = ‘X’
x4a3c1 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘A’
x4a3c2 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘T’

© Lionel Briand 2009
65

x4a3c3 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘J’
x4a3c4 x = 20, a = ‘ABCDEFGHIJKLMNOPQRST’, c = ‘X’
x5 x = 21

Criteria Using ChoicesCriteria Using Choices
All Combinations (AC): This is what was shown in the previous example,
what is typically done when using category-partition One value for everywhat is typically done when using category partition. One value for every
choice of every parameter must be used with one value of every (possible)
choice of every other category.

Each choice (EC): This is a weaker criterion One value from each choice forEach choice (EC): This is a weaker criterion. One value from each choice for
each category must be used at least in one test case.

Base Choice (BC): Compromise. A base choice is chosen for each category,
and a first base test is formed by using the base choice for each categoryand a first base test is formed by using the base choice for each category.
Subsequent tests are chosen by holding all but one base choice constant
and forming choice combinations by covering all non-base choices of the
selected category. This procedure is repeated for each category.

The base choice can be the simplest, smallest, first in some ordering, or
most likely from an end-user point of view, e.g., in the previous example,
character c occurs in the middle of the string, length x is within 2-19.

© Lionel Briand 2009
66

• Base choices only: x = 7, a = ‘ABCDEFG’, c = ‘D’

• Two base choices, one non-base choice: x = 7, a = ‘ABCDEFG’, c = ‘G’

Category Partition: ConclusionsCategory Partition: Conclusions

Identifying parameters and environments conditions andIdentifying parameters and environments conditions, and
categories, heavily relies on the experience of the tester
Makes testing decisions explicit (e.g., constraints), open for g p (g ,), p
review
Combine boundary-value analysis, robustness testing, and
equivalence class partitioningequivalence-class partitioning
Once specifying categories, choices, and constraints is
completed, the technique is straightforward and can be p , q g
automated (e.g., Siemens tool)
The criteria for test-case reduction makes it useful for
practical testing

© Lionel Briand 2009
67

practical testing

Combining WB and BB TestingCombining WB and BB Testing

Brian Marick recommends the following approach (for large scaleBrian Marick recommends the following approach (for large scale
testing):

1. Use black-box testing to generate functional tests from
requirements and design to try every function.q g y y

2. Check the structural coverage after the functional tests are all
verified to be successful.

3. Where the structural coverage (e.g., edge) is imperfect, generate 3 e e t e st uctu a co e age (e g , edge) s pe ect, ge e ate
functional tests (not structural) that induce the additional
coverage.

This works because form (structure) should follow function!
• Uncovered code must have some purpose, and that purpose

has not been invoked, so some function is untested

© Lionel Briand 2009
68

