
Software Testing Overviewg

Prof Lionel BriandProf. Lionel Briand
Simula Research Laboratory

Oslo, Norway
briand@simula.no@

© Lionel Briand 2009
1

Tentative Outline

• Class 1
– Software Testing Overview part ISoftware Testing Overview part I
– White-box Testing techniques

• Class 2• Class 2
– Black-Box Testing techniques

S ft T ti O i t II– Software Testing Overview part II

© Lionel Briand 2009
2

Software Testing Overview:
Part I

© Lionel Briand 2009
3

Software has become prevalent in all aspects of our lives

© Lionel Briand 2009
4

Qualities of Software Products

• Correctness
• Reliability

• Repairability
• Evolvabilityy

• Robustness
• Performance

y
• Reusability
• Portability

• User Friendliness
• Verifiability

y
• Understandability
• InteroperabilityVerifiability

• Maintainability
Interoperability

© Lionel Briand 2009
5

Pervasive Problems
S f i l d li d l• Software is commonly delivered late, way over
budget, and of unsatisfactory quality

• Software validation and verification are rarelySoftware validation and verification are rarely
systematic and are usually not based on sound,
well-defined techniques
S f d l l• Software development processes are commonly
unstable and uncontrolled

• Software quality is poorly measured, monitored,Software quality is poorly measured, monitored,
and controlled.

• Software failure examples:
h // b d / /b / f b h l

© Lionel Briand 2009
6

http://www.cs.bc.edu/~gtan/bug/softwarebug.html

Examples of Software Failures
• Communications: Loss or corruption of p

communication media, non delivery of data.
• Space Applications: Lost lives, launch delays, e.g.,

European Ariane 5 shuttle, 1996: u ope e 5 s u e, 996:
– From the official disaster report: “Due to a

malfunction in the control software, the rocket
veered off its flight path 37 seconds afterveered off its flight path 37 seconds after
launch.”

• Defense and Warfare: Misidentification of friend or
foefoe.

• Transportation: Deaths, delays, sudden acceleration,
inability to brake.
El i P D h i j i

© Lionel Briand 2009
7

• Electric Power: Death, injuries, power outages,
long-term health hazards (radiation).

Examples of Software FailuresExamples of Software FailuresExamples of Software Failures Examples of Software Failures
(cont.)

• Money Management: Fraud, violation of privacy, shutdown of
stock exchanges and banks, negative interest rates.

• Control of Elections: Wrong results (intentional or non-Control of Elections: Wrong results (intentional or non
intentional).

• Control of Jails: Technology-aided escape attempts and successes,
failures in software controlled locksfailures in software-controlled locks.

• Law Enforcement: False arrests and imprisonments.

© Lionel Briand 2009
8

Ariane 5 – ESA

On June 4, 1996, the flight of the
Ariane 5 launcher ended in a
failure.

Only about 40 seconds after
initiation of the flight
sequence at an altitude ofsequence, at an altitude of
about 3,700 m, the launcher
veered off its flight path,

© Lionel Briand 2009
9

broke up and exploded.

Ariane 5 – Root CauseAriane 5 Root Cause
• Source: ARIANE 5 Flight 501 Failure, Report by the Inquiry

BoardBoard
A program segment for converting a floating point number to a
signed 16 bit integer was executed with an input data value outside
th t bl b i d 16 bit i tthe range representable by a signed 16-bit integer.
This run time error (out of range, overflow), which arose in both
the active and the backup computers at about the same time, was
detected and both computers shut themselves down.
This resulted in the total loss of attitude control. The Ariane 5
turned uncontrollably and aerodynamic forces broke the vehicle y y
apart.
This breakup was detected by an on-board monitor which ignited
the explosive charges to destroy the vehicle in the air Ironically

© Lionel Briand 2009
10

the explosive charges to destroy the vehicle in the air. Ironically,
the result of this format conversion was no longer needed after lift
off.

Ariane 5 – Lessons Learned
• Adequate exception handling and redundancy strategies• Adequate exception handling and redundancy strategies

(real function of a backup system, degraded modes?)
• Clear, complete, documented specifications (e.g.,Clear, complete, documented specifications (e.g.,

preconditions, post-conditions)
• But perhaps more importantly: usage-based testing

(based on operational profiles), in this case actual
Ariane 5 trajectories

• Note this was not a complex computing problem but a• Note this was not a complex, computing problem, but a
deficiency of the software engineering practices in place
…

© Lionel Briand 2009
11

F 18 crashF-18 crash
• An F-18 crashed because of a missing exception

condition:condition:
An if ... then ... block without the else clause that was
thought could not possibly arise.

• In simulation, an F-16 program bug caused the virtual
plane to flip over whenever it crossed the equator, as a

lt f i i i i t i di t th l tit dresult of a missing minus sign to indicate south latitude.

© Lionel Briand 2009
12

Fatal Therac-25 Radiation

• In 1986, a man in Texas received between 16,500-
25,000 radiations in less than 10 sec, over an area
of about 1 cmof about 1 cm.

• He lost his left arm, and died of complications 5
months later.months later.

© Lionel Briand 2009
13

Power Shutdown in 2003

508 generating units
and 256 power

Affected 10 million
l i O t i

and 256 power
plants shut down

people in Ontario,
Canada

Affected 40 million
l i 8 USpeople in 8 US

states

Financial losses of
$6 Billion USD

The alarm system in the energy management system failed due

© Lionel Briand 2009
14

to a software error and operators were not informed of the power
overload in the system

Consequences of Poor Quality
• Standish Group surveyed 350 companies, over 8000

projects, in 1994
• 31% cancelled before completed 9-16% were delivered• 31% cancelled before completed, 9-16% were delivered

within cost and budget
• US study (1995): 81 billion US$ spend per year for failing

ft d l t j tsoftware development projects
• NIST study (2002): bugs cost $ 59.5 billion a year. Earlier

detection could save $22 billion.

© Lionel Briand 2009
15

Quality AssuranceQuality Assurance
• Uncover faults in the documents where they are

introduced in a systematic way in order to avoid rippleintroduced, in a systematic way, in order to avoid ripple
effects. Systematic, structured reviews of software
documents are referred to as inspections.

i i ff i• Derive, in a systematic way, effective test cases to uncover
faults

• Automate testing and inspection activities, to the g p ,
maximum extent possible

• Monitor and control quality, e.g., reliability,
maintainability safety across all project phases andmaintainability, safety, across all project phases and
activities

• All this implies the quality measurement of SW products
and processes

© Lionel Briand 2009
16

and processes

Dealing with SW FaultsDealing with SW Faults
Fault Handling

Fault Avoidance Fault ToleranceFault Detection

Atomic
Transactions

Modular
RedundancyInspectionsDesign

Methodology

T ti D b i

Verification Configuration
Management

Transactions RedundancyMethodology

Testing Debugging

Component Integration System Correctness Performance

© Lionel Briand 2009
17

Component
Testing

Integration
Testing

System
Testing

Correctness
Debugging

Performance
Debugging

Testing Definition

• SW Testing: Techniques to execute programs
with the intent of finding as many defects as
possible and/or gaining sufficient confidence
in the software system under test.
– “Program testing can show the presence of

bugs, never their absence” (Dijkstra)

© Lionel Briand 2009
18

Basic Testing Definition
• Errors: People commit errorsErrors: People commit errors
• Fault: A fault is the result of an error in the software

documentation, code, etc.
F il A f il h f lt t• Failure: A failure occurs when a fault executes

• Many people use the above three terms inter-changeably. It
should be avoided

• Incident: Consequences of failures – Failure occurrence
may or may not be apparent to the user

• The fundamental chain of SW dependability threats:• The fundamental chain of SW dependability threats:

E rror Fault Failure
propagation c aus ation

. . .Inc ident
res ults in

© Lionel Briand 2009
19

Why is SW testing important?
A di t ti t 50% f d l t• According to some estimates: ~50% of development
costs

• A study by (the American) NIST in 2002:• A study by (the American) NIST in 2002:
– The annual national cost of inadequate testing is as

much as $59 Billion US!much as $59 Billion US!
– The report is titled: “The Economic Impacts of

Inadequate Infrastructure for Software Testing”Inadequate Infrastructure for Software Testing

© Lionel Briand 2009
20

Testing
Definitions & Objectives

© Lionel Briand 2009
21

Test Stubs and Drivers
• Test Stub: Partial implementation of a component on which a unit under test

depends.
Tes t S tub

D epends
C om ponent a C om ponent b

U nder Tes t

p

• Test Driver: Partial implementation of a component that depends on a unit under
test.

Tes t D riv er

C om ponent j C om ponent k

U nder Tes t

D epends

© Lionel Briand 2009
22

• Test stubs and drivers enable components to be isolated from the rest of the
system for testing.

Summary of Definitions
Test suite

exercises is revised by

* * 1…n

Test case CorrectionComponent

Test stub

* *

* Test stub

Test driver

finds
repairs

*

is caused by

* *Failure Error

is caused by

*
**

*

Fault

© Lionel Briand 2009
23

is caused byis caused by

Motivations
N tt h i• No matter how rigorous
we are, software is going
to be faulty

• Testing represent a
Limited resources

substantial percentage of
software development
costs and time to market

• Impossible to test under

Time
Money Peopl

e

expertis
e

p
all operating conditions –
based on incomplete
testing, we must gain
confidence that the system co de ce e sys e
has the desired behavior

• Testing large systems is
complex – it requires
strategy and technology

© Lionel Briand 2009
24

strategy and technology-
and is often done
inefficiently in practice

The Testing Dilemma
Available

All Software System
functionality

testing
resources

Potentially
thousands
of items
to testto test

© Lionel Briand 2009
25Faulty functionality

Testing Process OverviewTesting Process Overview
SW Representationp
(e.g., models, requirements)

Derive Test cases
Estimate

SW Code
Execute Test cases

Estimate
Expected
Results

Compare

Get Test Results

Test Oracle
[T t R lt O l]Co pa e [Test Result==Oracle]

[Test Result!=Oracle]

© Lionel Briand 2009
26

Qualities of Testing

• Effective at uncovering faults
• Help locate faults for debuggingp gg g
• Repeatable so that a precise understanding

of the fault can be gainedg
• Automated so as to lower the cost and

timescale
• Systematic so as to be predictable in terms

of its effect on dependability

© Lionel Briand 2009
27

p y

Continuity Property
• Problem: Test a bridge ability to sustain a g y

certain weight
• Continuity Property: If a bridge can sustain a

weight equal to W1, then it will sustain any g q y
weight W2 <= W1

• Essentially, continuity property= small
differences in operating conditions should not
result in dramatically different behavior

• BUT the same testing property cannot be applied when testing software• BUT, the same testing property cannot be applied when testing software,
why?

• In software, small differences in operating conditions can result in
dramatically different behavior (e g value boundaries)

© Lionel Briand 2009
28

dramatically different behavior (e.g., value boundaries)
• Thus, the continuity property is not applicable to software

Subtleties of SoftwareSubtleties of Software
Dependability

• Dependability: Correctness, reliability, safety,
robustness

• A program is correct if it obeys its specification.
• Reliability is a way of statistically approximating

correctness.
• Safety implies that the software must always

display a safe behavior under any conditiondisplay a safe behavior, under any condition.
• A system is robust if it acts reasonably in severe,

unusual or illegal conditions.

© Lionel Briand 2009
29

unusual or illegal conditions.

Subtleties of SoftwareSubtleties of Software
Dependability II

• Correct but not safe or robust: the specification is
inadequate

• Reliable but not correct: failures rarely happen
• Safe but not correct: annoying failures may

happen
• Reliable and robust but not safe: catastrophic

failures are possible

© Lionel Briand 2009
30

Software DependabilitySoftware Dependability
Ex: Traffic Light Controller

• Correctness, Reliability:
The system should let traffic pass according to the correct pattern and central
scheduling on a continuous basis.
• Robustness:
The system should provide degraded functionality in the presence of
abnormalities.
• Safety:
It should never signal conflicting greens.

An example degraded function: the line to central controlling is cut-off and a
default pattern is then used by local controller.

© Lionel Briand 2009
31

Dependability Needs Vary
• Safety-critical applications

– flight control systems have strict safety requirements
t l i ti t h t i t b t– telecommunication systems have strict robustness
requirements

• Mass-market products
– dependability is less important than time to market

• Can vary within the same class of products:
reliability and robustness are key issues for multi user– reliability and robustness are key issues for multi-user
operating systems (e.g., UNIX) less important for
single users operating systems (e.g., Windows or
MacOS)

© Lionel Briand 2009
32

MacOS)

Fundamental PrinciplesFundamental Principles

© Lionel Briand 2009
33

Exhaustive TestingExhaustive Testing
• Exhaustive testing, i.e., testing a software system using all

the possible inputs, is most of the time impossible.
• Examples:

A program that computes the factorial function (n!=n (n 1) (n 2) 1)– A program that computes the factorial function (n!=n.(n-1).(n-2)…1)
• Exhaustive testing = running the program with 0, 1, 2, …, 100,

… as an input!
A il (j)– A compiler (e.g., javac)
• Exhaustive testing = running the (Java) compiler with any

possible (Java) program (i.e., source code)

© Lionel Briand 2009
34

Input Equivalence Classes

General principle to reduce the number of inputs
− Testing criteria group input elements into (equivalence)

classes
– One input in selected in each class (notion of test

coverage)coverage)
Input

Domain

t 4t 5

tc1 tc3
tc6

tc4tc5

© Lionel Briand 2009
35

tc2

Test CoverageTest Coverage
Software Representation

(Model) Associated Criteria
Test cases must cover
all the … in the model

Test Data

Representation of
• the specification ⇒ Black-Box Testing

• the implementation ⇒ White-Box Testing

© Lionel Briand 2009
36

Complete Coverage: White-Box
if x > y then

Max := x;
else

Max :=x ; // fault!
end if;

{x=3, y=2; x=2, y=3} can detect the error, more “coverage”
{x=3, y=2; x=4, y=3; x=5, y=1} is larger but cannot detect it

• Testing criteria group input domain elements into (equivalence)
classes (control flow paths here)

• Complete coverage attempts to run test cases from each class

© Lionel Briand 2009
37

p g p

Complete Coverage: Black-Box
• Specification of Compute Factorial Number: If the input value n is < 0, then an

appropriate error message must be printed. If 0 <= n < 20, then the exact value of n!
must be printed. If 20 <= n < 200, then an approximate value of n! must be printed in
floating point format, e.g., using some approximate method of numerical calculus. The
d i ibl i f h l i ll if h i b j dadmissible error is 0.1% of the exact value. Finally, if n>=200, the input can be rejected

by printing an appropriate error message.

• Because of expected variations in behavior, it is quite natural to divide p , q
the input domain into the classes {n<0}, {0<= n <20}, {20 <= n <
200}, {n >= 200}. We can use one or more test cases from each class
in each test set. Correct results from one such test set support the
assertion that the program will behave correctly for any other classassertion that the program will behave correctly for any other class
value, but there is no guarantee!

© Lionel Briand 2009
38

Black vs. White Box Testing

Specification

System

Specification

Implementation

Missing functionality:
Cannot be revealed by white-box

Unexpected functionality:
Cannot be revealed by black-box

© Lionel Briand 2009
39

y
techniques

y
techniques

White-box vs. Black-box Testing

• Black box
+ Check conformance with

specifications

•White box
+ It allows you to be
confident about code specifications

+ It scales up (different
techniques at different
granularity levels)

coverage of testing
+ It is based on control or
data flow code analysis

– It depends on the
specification notation and
degree of detail

k h h f

– It does not scale up
(mostly applicable at unit
and integration testing
levels)– Do not know how much of

the system is being tested
– What if the software

performed some

levels)
– Unlike black-box
techniques, it cannot reveal
missing functionalities (part

© Lionel Briand 2009
40

performed some
unspecified, undesirable
task?

missing functionalities (part
of the specification that is
not implemented)

Software Testing Overview:
Part II

© Lionel Briand 2009
41

Practical AspectsPractical Aspects

© Lionel Briand 2009
42

Many Causes of Failures

• The specification may be wrong or have a
missing requirementg q

• The specification may contain a
requirement that is impossible to implementrequirement that is impossible to implement
given the prescribed software and hardware

• The system design may contain a fault• The system design may contain a fault
• The program code may be wrong

© Lionel Briand 2009
43

Test Organization

• May different potential causes of failure, Large
systems -> testing involves several stages

• Module, component, or unit testing
• Integration testing
• Function test
• Performance test
• Acceptance test
• Installation test

© Lionel Briand 2009
44

Unitco
de

Design System Other
C t

UserU t
test

m
po

ne
nt

 c g
descriptions

y
functional

specifications
software

specifications

Customer
requirements

environment

Unit
test

C
om

t c
od

e

Integration
test

Function
test

Performance
test

Acceptance
test

Installation
test

om
po

ne
nt

.

C
o

od
e

.

. Integrated
modules

Functioning
system

Verified,
validated

Accepted
system

Unit
test

po
ne

nt
 c

o software

SYSTEM
Pfleeger 1998

© Lionel Briand 2009
45C

om
p IN USE!Pfleeger, 1998

Unit Testing
• (Usually) performed by each developer• (Usually) performed by each developer.
• Scope: Ensure that each module (i.e., class, subprogram) has been

implemented correctly.
• Often based on White-box testing.

Test
• A unit is the smallest testable part of an application.
• In procedural programming, a unit may be an individual

Test

subprogram, function, procedure, etc.
• In object-oriented programming, the smallest unit is a method;

which may belong to a base/super class, abstract class or

© Lionel Briand 2009
46

y g p ,
derived/child class.

Integration/Interface Testing
• Performed by a small team.
• Scope: Ensure that the interfaces between components (which

individual developers could not test) have been implementedindividual developers could not test) have been implemented
correctly, e.g., consistency of parameters, file format

• Test cases have to be planned, documented, and reviewed.

Test

© Lionel Briand 2009
47

• Performed in a relatively small time-frame

Integration Testing FailuresIntegration Testing Failures
Integration of well tested components may lead to g p y

failure due to:
• Bad use of the interfaces (bad interface

i i i i l i)specifications / implementation)
• Wrong hypothesis on the behavior/state of related

modules (bad functional specification /modules (bad functional specification /
implementation), e.g., wrong assumption about
return value

• Use of poor drivers/stubs: a module may behave
correctly with (simple) drivers/stubs, but result in
f il h i t t d ith t l (l)

© Lionel Briand 2009
48

failures when integrated with actual (complex)
modules.

System TestingSystem Testing
• Performed by a separate group within the organization (Most of

the times)the times).

• Scope: Pretend we are the end-users of the product.

• Focus is on functionality but may also perform many other types• Focus is on functionality, but may also perform many other types
of non-functional tests (e.g., recovery, performance).

Test

• Black-box form of testing but code coverage can be monitored

© Lionel Briand 2009
49

Black box form of testing, but code coverage can be monitored.

• Test case specification driven by system’s use-cases.

Differences among TestingDifferences among Testing
Activities

Unit Testing Integration Testing System Testing

F iFrom module
specifications

Visibility

From interface
specifications

Visibility

From requirements
specs

No visibility ofVisibility
of code details

Complex
ff ldi

Visibility
of integr. Struct.

Some
ff ldi

No visibility of
code

No drivers/stubs
scaffolding

Behavior of
single modules

scaffolding

Interactions
among modules

System
functionalities

© Lionel Briand 2009
50

single modules among modules functionalities

Pezze and Young, 1998

System vs. Acceptance Testing
• System testing• System testing

– The software is compared with the requirements
specifications (verification)

– Usually performed by the developers, who know the
system

• Acceptance testing• Acceptance testing
– The software is compared with the end-user

requirements (validation)
– Usually performed by the customer (buyer), who knows

the environment where the system is to be used
– Sometime distinguished between α - β-testing for

© Lionel Briand 2009
51

Sometime distinguished between α β testing for
general purpose products

Testing through the Lifecycle
• Much of the life-cycle development artifacts provides a

rich source of test data
• Identifying test requirements and test cases early helps• Identifying test requirements and test cases early helps

shorten the development time
• They may help reveal faults
• It may also help identify early low testability specifications

or design

Analysis Design Implementation Testing

© Lionel Briand 2009
52

Preparation Preparation
for Testfor Test

Preparation Preparation
for Testfor Test

Preparation Preparation
for Testfor Test

TestingTesting

Life Cycle Mapping: V Model

Other name:
IntegrationIntegration
testing

Other name:
Unit

© Lionel Briand 2009
53

testing

Testing Activities BEFORETesting Activities BEFORE
Coding

• Testing is a time consuming activity
• Devising a test strategy and identify the test

i b i l f irequirements represent a substantial part of it
• Planning is essential

T ti ti iti d h it i i• Testing activities undergo huge pressure as it is is
run towards the end of the project

• In order to shorten time-to-market and ensure a• In order to shorten time-to-market and ensure a
certain level of quality, a lot of QA-related
activities (including testing) must take place early

© Lionel Briand 2009
54

in the development life cycle

Testing takes creativityTesting takes creativity
• Testing often viewed as dirty work (though less g y (g

and less).
• To develop an effective test, one must have:

• Detailed understanding of the system
• Knowledge of the testing techniques
• Skill to apply these techniques in an effective and efficient

manner

• Testing is done best by independent testers
• Programmer often stick to the data set that makes• Programmer often stick to the data set that makes

the program work
• A program often does not work when tried by

© Lionel Briand 2009
55

p og a o te does ot wo w e t ed by
somebody else.

