TEMA: NP og NP-kompletthet
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TEMA: NP og NP-kompletthet

Problems —— interesting, —~+ formal
natural languages
problems (FL.s)

(EX. MATCHING, SORTING, T.S.P.)

Solutions - algorithms —~— Turing
machines

Efficiency -+ complexity -+ complexity
classes

Unsolvable (impossible)

Problems,

FLs Intractable (horrible)

Nice

Note: This is from in210, first 2 lectures
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Historical introduction

In mathematics (cooking, engineering, life)
solution = algorithm

Examples:
® /253 =
eazr’ +br+c=0

e Euclid’s g.c.d. algorithm — the earliest
non-trivial algorithm?
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Jalgorithm? — metamathematics

e K. Godel (1931): nonexistent theories

e A. Turing (1936): nonexistent algorithms
(article: “On computable Numbers. .. ”)

Unsolvable
Turing’s results &
techniques

Solvable
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e Von Neumann (ca. 1948): first computer

e Edmonds (ca. 1965): an algorithm for
MAXIMUM MATCHING

Ann X Billy
Mary Joe
Moe ¢—e Bob

Edmonds’ article rejected based on existence
of trivial algorithm: Try all possibilities!

TEMA: NP og NP-kompletthet

(using approximation)
e n — 100 boys
en!=100x 99 x --- x 1 > 10" possibilities

e assume < 10'? possibilites tested per
second

o < 10121121342 < 10?3 tested per century

e running time of trivial algorithm for
n = 100 is > 10"9—23 = 10% centuries!

Compare: “only” ca. 10'* years since Big Bang!
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TEMA: NP og NP-kompletthet TEMA: NP og NP-kompletthet
: . : How to solve the information-processin
Edmonds: Mine algorithm is a problems efficiently p 8
polynomial-time algorithm, the trivial
. . < 1 - . . N
algorithm is exponential-time! ~_-> : abstraction, formalisation
. . . . ~ i ~
e 1 polynomial-time algorithm for a given R - pairs, {(@aaekl
problem? functions, languages
“interesting
e Cook / Levin (1972): N"P-completeness problems”
solutions - algorithms ~—~— Turing
Intractable machines
Cook/Levin results & — -
s . .
techniques efficiency - resources, — complexity
a P upper/lower classes
bounds
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o All algorithms in the world live in the
basket

o Infinitely many of them - most of them are
unknown to us

e Meaning of unsolvability: no algorithm in
the basket solves the problem

e Meaning of solvability: there is an
algorithm in the basket that solves the
problem (but we do not necessarily know
what the algorithm looks like)
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g

-

Monkey puzzle is an example of a problem
that does not have a reasonable solution (or
polynomial time). Such problems are called
intractable
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Algorithm
Unsolvable
397
397 + 46 = 46 443 Intractable
input 443 output /

computation €= rules
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Turing machine -intuitive description

b
' input/output
E"'|b|4@'|1|0|b|b|---§*/(mp]t';p(;upu)

“~read/write head

"processor' or
¢ Tinite state control

e
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Turing machine - formal description
A Turing machine (TM) is M = (£, T, Q, )
where

¥, the input alphabet is a finitive set of input
symbols

[, the tape alphabet is a finite set of tape
symbols which includes ¥, a special blank
symbol b < '\ &, and possibly other
symbols

Q is a finite set of states which includes a
start state s and a halt state h

4 , the transition function is
6:(Q\{h}) xT - @ xT x {L,R}
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COI]][)[I tation - formal definition

A configuration of a Turing machine M isa
triple € = (q, wy, w,) where ¢ € () is a state and
wy and w, are strings over the tape alphabet.

We say that a configuration (g, wy, w, ) yields ir
one step configuration (¢, wf, w}) and write
(q, wy, u-',-!lll—I-:q', wy, w,) if (and only if) for some

a,b,ceTand r, y € ' either or

w=xa  w, = by and wy = w, = acy and

wp = wh=acy  Slg,b) =1, ¢, L) wy=xb wl =cy dlg,a) = (q,b,R)

W W W W,
gololel x lafs] y [p]6f -3 §-[olbp] x Jable] v [ofb]-3
[
wy W wi K
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Church’s thesis

Turing machines can compute every function
that can be computed by some algorithm or
program or computer.

Turing complete programming languages.

Neural networks are Turing complete (Mc
Cullok, Pitts).

If a Turing machine cannot compute f, no
computer can!
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A Turing machine M which decides

L = {010}

S JoJoliJolalnl -3

B

q
* 9z 5]
M=(ZT, Q,d8
T={0,1,5,Y,N}

E={0,1}

Q= {shq g, 9. %

g | g b, R) | (g, b R |(

g | lge, b, )| (ge, b, )| {
(M )

q: | {5, b, R :q,., b, R)

@il (ge by B) | (g, b, R)

(h,Y,—}

Qe | (Ge, b, B | (e, b, R)

{h,N,—)

('~ means "don't move the read /write head”)
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NP vs P
NP stands for nondeterministic polynomial
time.

A deterministic machine, given an
instruction, executes it and goes to the next
instruction, which is unique.

A nondeterministic machine, after each
instruction, has a choice of the next
instruction and it always, magicaly, makes the
right choice.

Nondeterministic machine seems like a
funny concept and too powerfull. It is not so.
For example, undecided problems remain
undecided. A problem is in NP if, in
polynomial time, we can prove that any “yes”
instance of the problem (a certificate) is
correct. NP includes all problems that have
polynomial time solutions.

Is P = NP 222
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Class NPC

Among all the problems known to be in NP,
there is a subset known as NP-complete
problems, which contains the hardest
problems in NP (intractable, with polynomial
certificates). These have also one more
property that is extreemly interesting: they all
have a common fate: i.e. there exist a
polynomial time reduction from any one
problem in NPC to any other problem in
NPC. Reduction can be quite simple, or it can
actualy involve several intermediate
reductions.
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Reducing Hamiltonian paths
to traveling salesman

Hamiltonian path is a simple path
containing all the vertices of the graph G.
Traveling salesman problem is a problem of
finding a simple cycle in the weighted graph

G of minimum weight.

3
i
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Uncomputability
What algorithmic can and cannot do.

1. Show that HALTING (the Halting problem)
is unsolvable

2Ly
Unsolvable
Solvable

2. Use reductions - to show that other
problems are unsolvable
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Step 1: HALTING is unsolvable
Def. 1 (HALTING)
Lu = {’.J'I-[.;I‘J

Lemma 1 Every Turing decidable language is
Turing acceptable.

M halts on input x}

Proof (by reduction): Given a Turing
machine M that decides L we can construct a
Turing machine M’ that accepts L as follows:

halt
input
—

program, or  potential
algonthm input
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effective reduction

transform X into (P specifics X as
trvaal =onlv mpul. with
s outputh

is R correct wath
respect o £

4 ihypmhetical)

3 oracle for venficanon
d

i hvpotheticall
== algonthm for the
halung problem

Figure 8.7 If verification is decidable. halting is too.
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(hypothetical)
= program () for

4 halting problem

_ new (hypothetical)
program §
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does § halt
ons?

Contradiction.

L
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Ll

______ .'J
) % ©

(‘._ompula!)il ity Computability
in principle in practice

undecidable
(non-computable)

.

—————— intractable - ———- - -
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et G Preshurger arithmetic

EXPSPACE

Roadblock
(see Figure 7.14)
LEXPTIME

Monkey puzzles
(see Figure 7.1)

Testing primality

Salary summation
(see Figures2.3and 2.4)
and most evervday
problems

Telephone book search
(see Figures 6.1 and 6.2)
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