Mandatory assignment 2 - inf2220 2008

Bjarne Holen

Deadline: Friday 7. November

This assignment should be solved individually, and handed to the teaching assis-
tant responsible for your group.

Building a Package Management System

In this assignment we are going to build a package management system, which is a
program that helps users (usually an administrator) install programs or resources.
The word package will be used to denote either a program or some other compo-
nent that programs can require to work properly, i.e., resources like libraries or
fonts. The program we are going to construct in this assignment depends on a
Java Virtual Machine, and the Java core library in order to work for instance. An
installer (package management system) keeps track of the dependencies between
packages and keeps your system free from broken packages. A broken package in
this context is a program that will not work, since it requires a missing resource.

There are many package management systems around, the Linux installations at
the University uses RPM (Red Hat Package Manager), type rpm -ga on the
command line, and you will get a listing of the currently installed packages. On
some operating systems programs typically come with an installer that contains
its dependencies in case they are not present (Windows). Can you think of any
problems which can occur with this approach?

Dependency graphs, like the one we are going to construct in this assignment,
have a wide variety of applications; project planning, job scheduling, and is also
an intricate part of software development (compilation, organizing imports. . .)

What is a Package?

In a real package management system, packages are typically some sort of com-
pressed archive (tar, zip) containing the files of the package. And when a package
is installed the archive is decompressed into the directory tree on the system. Type
rpm —-gf /bin/ls onthe command line on one of the Linux machines at the
University, and you will see what package this file belongs to. And you could type
rpm —-gl coreutils to see all the files belonging to this package, which
was decompressed into the local file system when the package was installed.

Our packages will be a bit simpler and will only contain a list of dependencies,
and a description.

File xmlutils.pkg

#

depends: libxml

description: handy xml utilities

The fist two lines are considered comments since they start with a # sign, and
are ignored. But all files in our repository will be files like this, which state their
dependencies and description, both fields can be empty.

Note that for every dependency there is a reverse dependency, so not only do we
have to make sure that the xml library 1ibxml is installed prior to xmlutils,
but we also have to make sure to remove xmlutils if 1ibxml is removed.

To list dependencies for emacs with RPM: rpm -g —--requires emacs
and to list reverse dependencies type: rpm -g --whatrequires emacs

Existing Code

This assignment has quite a bit of existing code, which you will extend in order
to create the installer. It’s quite common that students dislike the idea of starting
on these half-finished projects, but it does reduce the size of the task and it forces
some structure on the project. This will in turn make it possible for your teaching
assistants to read your source code faster and thus help you faster, and it is far
more realistic then starting out with no source code.

The code that is handed out is able to do some of the work, but the dependency
graph is missing, so any package can be installed and any package can be removed.

Ant

Since our project contains 14 classes spread out on different packages, compi-
lation with javac is a bit impractical. Ant is a tool that helps you compile Java
projects, similar to make for C and C++. It is also the default tool to build projects
with most IDEs like Netbeans and Eclipse. Compiling source code with Ant is not
hard, either with or without an IDE. Using Ant from the command line is shown
in a video tutorial that can be found at http://bjarneh.at.ifi.uio.no

Dependency Graph

In our package management system each package can list its own dependencies,
this information can be used to construct a dependency graph. Nodes in the de-
pendency graph represents packages, and their dependencies are the nodes that
can be reached by following the directed incoming edges. Below is a figure
which hopefully illustrates how dependencies are interconnected, the dependen-
cies are simplified, rom -g —--requires eclipse-platform to list the
actual dependencies.

Figure 1: Illustration of dependencies

As you can see from the figure, Eclipse depends on packages which themselves
depend on other packages. When our installer is asked to install Eclipse; we
will have to traverse the incoming edges, and make sure everything in our path
is installed. The sum of packages that can be reached this way, is what we call
its dependencies, i.e., not only its direct dependencies but the recursive set of all

3

elements which can be reached. Naturally a cycle inside our dependency graph
would be critical, since a recursive traversal over a cycle would be never ending.
We must ensure that no cycles are contained inside our dependency graph, this is
not something we can take for granted.

To locate the reverse dependencies of a package, we follow the directed graph in
the opposite direction (in the arrow direction). As you can see, all the packages in
the figure on the previous page will be broken if we remove the Java Development
Kit (jdk2) package. This is something we want to avoid, so we have to calculate
the set of reverse dependencies before packages are removed.

Representation

So how do we represent a graph like this, and how do we calculate the depen-
dencies and reverse dependencies? Naturally there is more then one way to do it,
but from the task of locating dependencies and reverse dependencies we should
focus on a structure which is easily traversable in both directions. Another thing
worth noticing is that package names are unique, which means that we can use
a HashMap<String, Node> to store pointers to all our nodes for quick re-
trieval. Once we have gotten a hold of the desired node, we can gather information
about dependencies by simply flipping all the edges in Figure 1 to produce a struc-
ture like the one shown in Figure 2.

Figure 2: Representation of dependency graph

By stating that we can reverse all the edges in our directed acyclic graph, we also
claim that this reversal will not produce cycles, can you prove this property?

4

A recursive traversal starting at the top node of Figure 2 (eclipse), will produce the
set of elements which eclipse depends on. In other words, we reverse all the edges
in our original dependency graph (Figure 1) in order to get a data structure which
is able to generate the set of dependencies we are looking for. Note the use of the
word set here, it can be taken literally. We can use a set in order to avoid adding the
same element over and over. A recursive traversal of all paths (starting from the
top) would add the last node three times, since all paths lead to the jdk2 package.
But if we insert our elements into an instance of a class which implements the
java.util. Set interface, we can eliminate multiple occurrences.

Where does this leave us with the reverse dependencies? This is basically the
same situation, we have to traverse the (reverse) dependency graph in the opposite
direction in order to gather the information we are looking for. The actual reverse
dependency graph is Figure 2, but we have to flip all the edges here as well, so we
end up with our original dependency graph, i.e., a structure like the one we have
in Figure 1.

Naturally we need to know something about the dependencies for us to be able
to construct the edges of the graph, but this information is given to us by the
PackageManager, note that every dependency generates a reverse dependency.

One could argue that our graph is no longer a directed graph since we have point-
ers in both directions, but we make a distinction between parents and children,
which means that loops will not occur with this approach. This is why the graph
class got the name Doub1eDAG since it is in some sense two directed acyclic
graphs (DAG) using the same nodes.

Getting Started

The first thing you need is the source code, which can be found here:
(you should be able to unpack at least one of these)

e http://bjarneh.at.ifi.uio.no/oblig2.zip

e http://bjarneh.at.ifi.uio.no/oblig2.tgz

These files are compressed archives (zip,tar) which contain an Ant script (build.xml),
the source code and an explanation of how to get started (README.txt).

tar -xvzf oblig2.tgz tounpack tar archive

unzip oblig2.zip to unpack zip archive

Source code is organized in a standard Java manner, where package names and
name-spaces follow the directory structure and the URL of our institution back-
wards (ifi.uio.no becomes no.uio.ifi). Try to grep after TODO inside the source
tree, this will hopefully get you going either you are using and IDE (Netbeans,
Eclipse, IntelliJ, JBuilder) or a text editor (Emacs, Vim, TextPad, Gedit).

General Information

It is important to note that this assignment is given for the first time, which means
that there will probably be some issues that we did not foresee. It also means that
your feedback is highly encouraged and needed in order for this assignment to
improve. And finally it means that the skill level needed to solve this assignment
has not been tested extensively. In other words, it may be a bit difficult, or it may
be too simple. A couple of optional assignments will be given in case you find
this task to easy.

A Small Note on Efficiency

Hopefully this assignment highlights some aspects of efficiency which we have
not dealt with during this course. We mainly deal with algorithms specially de-
signed to optimize a specific operation this semester, but there are also some de-
sign patterns which will help you write more efficient code. In this assignment
there are at least two such patterns.

1. Don’t calculate anything until it is absolutely necessary

2. Cache calculations which are static

As an example of 1) we do not calculate the dependency graph until we actually
need it. Maybe the user just wants to perform a search to look for a package, or
maybe he just wants to list what packages he already has installed. In either case,
the dependency graph is not needed.

As an example of 2) the content of the repository can be considered static for a
session, 1.e., we can assume that the content of the repositories stays the same for
the duration of our program execution. So once we have read the content of the
repository and calculated our dependency graph, we cache it (store it), i.e., we do
not rebuild this structure during our session, unless the user asks for an update.

Topological Sort

A topological sort is an ordering of all the elements in in a directed acyclic graph
such that no element is traversed before all its predecessors or dependencies are
traversed. Note that there can be more than one such ordering of elements, here
are a few examples from Figure 1.

e jdk - ant - libxml - xmlutils- gtk-swi - ibm-swi - eclipse
e jdk - gtk-swi - ibm-swi - libxml - xmlutils - ant - eclipse

e jdk - gtk-swi - ibm-swi - ant - libxml - xmlutils - eclipse

Where does this fit into the picture? This is used by installers in this situation:
We have located a set of missing dependencies, and we need to install package
A, B and C to fulfill requirements of package D, but in which order should we
install A, B and C? Or with an example from Figure 1, we are missing ant and
xmlutils in order to install ec1ipse, which of these should be installed first?
A topological sort preserves the ordering of the nodes, i.e., for any A < B in
the dependency graph, we know that A will come before B in the topological
sort. If you look at the different orderings listed you will see that ant proceeds
xmlutils in the first ordering, but not in the second. What does that mean? It
means that these two nodes are unrelated, so they can be installed in any order.
The topological ordering of the elements gives us certainty that we do not violate
any such dependency requirements between nodes.

Optional Assignments

1. Add a topological sort to your dependency graph
2. Add a graphical user interface

3. Modify GetOpt to handle multiple short-options concatenated

If anyone produces a really good solution for one of the last two optional assign-
ments, your solution will be included into this project the next time it is given,
with your name on it.

2. Use the Java Swing libraries to create a platform independent user interface.
You are pretty much free to do this as you please, and this should be the default
interface the user enters if no command line arguments are given.

3. GetOpt is the option parser in this assignment, and as you may know it is
common that one can concatenate several short options. As an example, one can
write 1s -1 -—ainashort form as 1s —1a or one can write tar -x -v -z
-fastar —xvzf. This could be done with some preprocessing of the input ar-
guments, before we start parsing them inside Get Opt . parseArgv for instance.

Handing in Your Assignment

Before you hand in you code, you must document your work. This should be
done in a standard Javadoc fashion. If your teaching assistant should be aware of
anything in particular concerning your project, you can add a small description
inside the README.txt file which is located in the root directory.

When you finish your project, you should make an archive (either zip or tgz) with
your solution and email it to your teaching assistant. You should run the Ant clean
target before you create this archive, since your teaching assistant will be able to
construct all the compiled code and documentation on his own.

Remember to take backups of your progress as you implement your solution, this
is especially important if you don’t use the machines here at the University for
your work.

So a typical procedure before you hand in your assignment, could be something
like this, assuming that your username is olanormann and that your assignment
is still inside the directory called oblig2.

> cp —a oblig2 olanormann
> tar —-cvzf olanormann.tgz olanormann

Now it should be a matter of sending the file olanormann.tgz to your teaching
assistant. If something goes wrong here, your original source will still be in place
in the oblig2 directory.

Help

For this assignment an IRC channel has been created, it was actually created
for similar reasons when I helped out with another course, so it bares the name
#logikk. Soby connectingto irc.ifi.uio.no and joining this channel you
should be able to get in touch with someone which is able to help you. Perhaps
you can help each other out as well. If nobody answers your question right away,
then you should check out this link:

http://bjarneh.at.ifi.uio.no/other/utils/logger.php

There you will find a logger for this channel, so everything written into the public
domain of this channel is logged to this website. This should also be the first place
you look if you have a question, since it may already be answered.

Good luck.

bjarneh

