Introduction to Finite Differences

Knut–Andreas Lie

SINTEF ICT, Dept. Applied Mathematics
Ordinary and Partial Differential Equations

What is an ordinary differential equation (ODE)?

An equation relating a function to its derivatives of a single variable (in such a way that the function itself can be determined)

Convention regarding notation:

- time-derivatives are denoted by a dot: \(\dot{y}(t) = \frac{dy}{dt}(t) \)
- other derivatives are denoted by a prime: \(y'(x) = \frac{dy}{dx}(x) \)

Equations relating derivatives of more than one independent variables are called partial differential equations (PDEs)

Different notations:

\[\frac{\partial u}{\partial x} = \partial_x u = u_x \]
Motivation

In this course we will study simulation of differential equations:

- steady heat equation (elliptic): \[\nabla^2 u = u_{xx} + u_{yy} = q \]
- heat equation (parabolic): \[u_t = \nabla^2 u, \]
- wave equation (hyperbolic): \[u_{tt} = \nabla^2 u, \]
- transport equations: \[u_t + \nabla f(u) = \varepsilon \nabla^2 u, \]

Common for all: relates various derivatives of unknown functions

These are all \textit{continuous} quantities, which cannot be represented on a computer \(\rightarrow\) we need discrete quantities.
Computing Derivatives

Question:

How do we compute the derivative of a given function \(f(x) \) on a computer?

Consider the definition of the derivative:

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.
\]

Idea: use a finite \(h \) to estimate \(f'(x) \):

\[
f'(x) \approx \frac{f(x + h) - f(x)}{h}
\]

This is a forward finite difference. Clearly \(h \) must be small for this to be a good approximation.
Finite differences

‘Rigorous’ derivation from MacLoren series:

\[f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(\xi), \]

for \(x \leq \xi \leq x + h \). We can rearrange to

\[f'(x) = \frac{f(x + h) - f(x)}{h} - \frac{h}{2} f''(\xi). \]

Thus, the error we make by using forward differences is

\[\left| \frac{f(x + h) - f(x)}{h} - f'(x) \right| \leq Mh, \]

where \(M \) depends on \(f'' \). We call the approximation first order since the error is \(O(h) \).
Similarly, we derive **backward differences**

\[
f'(x) \approx \frac{f(x) - f(x - h)}{h},
\]

which also are first order: \[\left| \frac{f(x) - f(x - h)}{h} - f'(x) \right| \leq Mh.\]

We can also derive **central differences**

\[
f'(x) \approx \frac{f(x + h) - f(x - h)}{2h},
\]

which are second order \[\left| \frac{f(x + h) - f(x - h)}{2h} - f'(x) \right| \leq Mh^2.\]

Here \(M \) depends on \(f''' \).
Finite differences cont’d

Higher-order approximations:

- second order: \(f'(x) = \frac{-f(x+2h)+4f(x+h)-3f(x)}{3h} + O(h^2) \)
- third order: \(f'(x) = \frac{2f(x+h)+3f(x)-6f(x-h)+f(x-2h)}{6h} + O(h^3) \)
- fourth order: \(f'(x) = \frac{-f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h)}{12h} + O(h^4) \)

Playing with Taylor series, one can define a host of approximations....

Exercise: Verify some of the above formulas.
Graphical interpretation

discrete points

slopes
Example: $f'(1.0)$ for $f(x) = x^2 + \sin(x)$

\[
F'_f(x) = \frac{f(x + h) - f(x)}{h}, \quad F'_b(x) = \frac{f(x + h) - f(x)}{h}, \quad F'_c(x) = \frac{f(x + h) - f(x - h)}{2h}
\]

<table>
<thead>
<tr>
<th>N</th>
<th>$f'(x)$</th>
<th>$F'_f(x)$</th>
<th>$F'_f - f'$</th>
<th>$F'_b(x)$</th>
<th>$F'_b - f'$</th>
<th>$F'_c(x)$</th>
<th>$F'_c - f'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2.5403</td>
<td>2.6114</td>
<td>7.11e-02</td>
<td>2.4664</td>
<td>-7.39e-02</td>
<td>2.5389</td>
<td>-1.41e-03</td>
</tr>
<tr>
<td>16</td>
<td>2.5403</td>
<td>2.5762</td>
<td>3.59e-02</td>
<td>2.5037</td>
<td>-3.66e-02</td>
<td>2.5400</td>
<td>-3.52e-04</td>
</tr>
<tr>
<td>32</td>
<td>2.5403</td>
<td>2.5583</td>
<td>1.80e-02</td>
<td>2.5221</td>
<td>-1.82e-02</td>
<td>2.5402</td>
<td>-8.79e-05</td>
</tr>
<tr>
<td>64</td>
<td>2.5403</td>
<td>2.5493</td>
<td>9.03e-03</td>
<td>2.5312</td>
<td>-9.07e-03</td>
<td>2.5403</td>
<td>-2.20e-05</td>
</tr>
<tr>
<td>128</td>
<td>2.5403</td>
<td>2.5448</td>
<td>4.52e-03</td>
<td>2.5358</td>
<td>-4.53e-03</td>
<td>2.5403</td>
<td>-5.50e-06</td>
</tr>
<tr>
<td>256</td>
<td>2.5403</td>
<td>2.5426</td>
<td>2.26e-03</td>
<td>2.5380</td>
<td>-2.26e-03</td>
<td>2.5403</td>
<td>-1.37e-06</td>
</tr>
</tbody>
</table>
Second order derivatives

Consider once more the Taylor series

\[f(x + h) = f(x) + hf'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f^{(3)}(x) + \frac{h^4}{24} f^{(4)}(\xi) \]
\[f(x - h) = f(x) - hf'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f^{(3)}(x) + \frac{h^4}{24} f^{(4)}(\eta) \]

Adding and rearranging terms we obtain

\[\frac{f(x + h) - 2f(x) + f(x - h)}{h^2} = f''(x) + e^h(x) \]

where the error is bounded by \(|e^h(x)| \leq \sup_x |f^{(4)}(x)| h^2 / 12. \)
Second order derivatives cont’d

Alternatively, we can use forward and backward approximations:

\[f''(x) \xrightarrow{\text{fwd.}} \frac{f'(x + h) - f'(x)}{h} \xrightarrow{\text{bwd.}} \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h} \]

\[= \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} \]

or the other way around

\[f''(x) \xrightarrow{\text{bwd.}} \frac{f'(x) - f'(x - h)}{h} \xrightarrow{\text{fwd.}} \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h} \]

\[= \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} \]
Second order derivatives cont’d

And to make the confusion complete; we can apply central differences twice

\[f''(x) \stackrel{ctr.}{\Rightarrow} \frac{f'(x + h/2) - f'(x - h/2)}{h} \stackrel{ctr.}{\Rightarrow} \frac{f(x+h) - f(x) - f(x)-f(x-h)}{h} \]

\[= \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} \]

Higher-order approximation:

\[f'''(x) = \frac{-f(x + 2h) + 16f(x) - 30f(x) + 16f(x - h) - f(x - 2h)}{12h^2} + O(h^4) \]