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Wave Equation in 1D
• Physical phenomenon: small vibrations on a string
• Mathematical model: the wave equation

∂2u

∂t2
= γ2 ∂2u

∂x2
, x ∈ (a, b)

• This is a time- and space-dependent problem
• We call the equation a partial differential equation (PDE)
• We must specify boundary conditions on u or ux at x = a, b

and initial conditions on u(x, 0) and ut(x, 0)
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Derivation of the Model

y

x
Physical assumptions:

• the string = a line in 2D space

• no gravity forces

• up-down movement (i.e., only in
y-direction)

Physical quantities:

• r = xi + u(x, t)j : position

• T(x) : tension force (along the
string)

• θ(x) : angle with horizontal direction

• %(x) : density
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Derivation of the Model, cont’d
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Physical principle, Newton’s second law:

total mass · acceleration = sum of forces
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Derivation of the Model, cont’d
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ρ
∆ s

h

Total mass of line segment: %(x)∆s

Acceleration: a =
∂2r

∂t2
=

∂2u

∂t2
j

The tension is a vector (with two components):

T(x) = T (x) cos θ(x) i + T (x) sin θ(x) j
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Derivation of the Model, cont’d

Newton’s law on a string element:

%(x)∆s
∂2u

∂t2
(x, t) j = T

(

x +
h

2

)

−T
(

x−
h

2

)

→ A vector equation with two components

Now we do some mathematical manipulations

• eliminate x-component of equation

• use geometrical considerations

and in the limit h→ 0 we get:

%

[

1 +

(

∂u

∂x

)2
]

1
2

∂2u

∂t2
=

∂

∂x



T

[

1 +

(

∂u

∂x

)2
]

−

1
2

∂u

∂x




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The Linearised Equation

For small vibrations (∂u/∂x ≈ 0) this simplifies to:

∂2u

∂t2
= c2 ∂2u

∂x2
c2 = T/%

Initial and boundary conditions:
• String fixed at the ends:

u(a, t) = u(b, t) = 0

• String initially at rest:

u(x, 0) = I(x), ut(x, 0) = 0
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The Complete Linear Model

After a scaling, the equation becomes

∂2u

∂t2
= γ2 ∂2u

∂x2
, x ∈ (0, 1), t > 0

u(x, 0) = I(x), x ∈ (0, 1)

ut(x, 0) = 0, x ∈ (0, 1)

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0

Exercise: try to go through the derivation yourself
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Finite Difference Approximation

Introduce a grid in space-time

xi = (i− 1)∆x, i = 1, . . . , n

t` = `∆t, ` = 0, 1, . . .

Central difference approximations

∂2u

∂x2
(xi, t`) ≈

u`
i−1 − 2u`

i + u`
i+1

∆x2
,

∂2u

∂t2
(xi, t`) ≈

u`−1
i − 2u`

i + u`+1
i

∆t2
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Finite Difference Approximation, cont’d

Inserted into the equation:

u`−1
i − 2u`

i + u`+1
i

∆t2
= γ2 u`

i−1 − 2u`
i + u`

i+1

∆x2

Solve for u`+1
i . Then the difference equation reads

u`+1
i = 2u`

i − u`−1
i + C2

(

u`
i−1 − 2u`

i + u`
i+1

)

Here C = γ ∆t
∆x is the CFL number
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Initial Conditions

Two conditions at ` = 0 for all i:

• u(x, 0) = I(x) −→ u0
i = I(xi)

• ut(x, 0) = 0 −→
u1

i−u−1

i

∆t = 0, −→ u1
i = u−1

i

The second condition inserted into the equation for ` = 0

u1
i = 2u0

i − u1
i + C2

(

u0
i−1 − 2u0

i + u0
i+1

)

−→ u1
i = u0

i +
1

2
C2
(

u0
i−1 − 2u0

i + u0
i+1

)

Two choices: either introduce a special stencil for ` = 0, or a set of fictitious values

u−1

i = u0
i +

1

2
C2

`

u0
i−1 − 2u0

i + u0
i+1

´

We use the second approach in the following.
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Algorithm
• Define storage u+

i , ui, u−

i for u`+1

i , u`
i , u`−1

i

• Set t = 0 and C = γ∆t/∆x

• Set initial conditions ui = I(xi), i = 1, . . . , n

• Define u−

i (i = 2, . . . , n − 1)

u−

i = ui +
1

2
C2(ui+1 − 2ui + ui−1),

• While t < tstop

− t = t + ∆t

− Update all inner points (i = 2, . . . , n − 1)

u+

i = 2ui − u−

i + C2(ui+1 − 2ui + ui−1)

− Set boundary conditions u+

1
= 0, u+

n = 0

− Initialize for next step u−

i = ui, ui = u+

i , i = 1, . . . , n
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Straightforward F77/C Implementation

int main (int argc, const char∗ argv[])
{

cout << "Give number of intervals in (0,1): ";
int i ; cin >> i ; int n = i+1;

MyArray<double> up (n); // u at time level l+1
MyArray<double> u (n); // u at time level l
MyArray<double> um (n); // u at time level l−1

cout << "Give Courant number: ";
double C; cin >> C;
cout << "Compute u(x,t) for t <= tstop, where tstop = ";
double tstop; cin >> tstop ;

setIC(u , um, C);
timeLoop (up, u, um, tstop , C);
return 0;

}
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The timeLoop Function

void timeLoop (MyArray<double>& up, MyArray<double>& u,
MyArray<double>& um, double tstop, double C)

{
int i , step_no=0, n = u.size ();
double h = 1.0/(n−1), dt = C∗h, t=0, Csq = C∗C;

plotSolution ( u , t ); // initial displacement to file
while ( t <= tstop ) {

t += dt ; step_no++;

for ( i = 2; i <= n−1; i++) // inner points
up(i ) = 2∗u( i ) − um(i) + Csq ∗ (u( i+1) − 2∗u(i ) + u( i−1));

up (1) = 0; up(n ) = 0; // update boundary points:
um = u; u = up; // update data struct . for next step

plotSolution ( up, t ); // plot displacement to file
}

}
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The setIC Function

void setIC (MyArray<double>& u0, MyArray<double>& um, double C)
{

int i , n = u0.size ();
double x, h = 1.0/(n−1); // length of grid intervals
double umax = 0.05, Csq=C∗C;

// set the initial displacement u(x,0)
for ( i = 1; i <= n; i ++) {

x = ( i−1)∗h;
if ( x < 0.7) u0(i ) = ( umax/0.7) ∗ x;
else u0(i ) = ( umax/0.3) ∗ (1 − x);

}

// set the help variable um:
for ( i = 2; i <= n−1; i++)

um(i) = u0(i ) + 0.5∗Csq ∗ (u0(i+1) − 2∗u0(i) + u0(i−1));
um(1) = 0; um(n) = 0; // dummy values, not used in the scheme

}
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The plotSolution Function

void plotSolution ( MyArray<double>& u, double t)
{

int n = u.size (); // the number of unknowns
double h = 1.0/(n−1); // length of grid intervals
char fn [30];
static int i=−1;

i ++; sprintf (fn , " .u.dat.%03d",i);
ofstream outfile (fn );
for ( int i = 1; i <= n; i++)

outfile << h∗(i−1) << " " << u( i ) << endl;
}

Here we have chosen to plot each time step in a separate (hidden) file
with name .u.dat.<step number>
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Animation in Matlab

function myplot(nr,t , incr )
if ( nargin==2) incr=1; end;
j=0;
for i=0:incr :nr

%
% read simulation file number <i>
fn=sprintf( ’ .u.dat.%03d’,i );
fp = fopen(fn,’ r ’ ); [ d,n]=fscanf(fp, ’%f’ ,[2, inf ]);
fclose(fp );
%
% plot the result
plot(d (1,:), d (2,:), ’−o’); axis ([0 1 −0.1 0.1]);
tittel = sprintf( ’Time t=%.3f’, (t∗ i )/ nr );
title ( tittel );
%
% force drawing explicitly and wait 0.2 seconds
drawnow; pause(0.05);

end
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What about the Parameter C?

How do we choose the parameter C = ∆t/∆x ?
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Solution at time t = 0.5 for h = 1/20
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Numerical Stability and Accuracy
• We have two parameters, ∆t and ∆x, that are related through

C = ∆t/∆x

• How do we choose ∆t and ∆x?

• Too large values of ∆t and ∆x give

- too large numerical errors

- or in the worst case: unstable solutions

• Too small ∆t and ∆x means too much computing power

• Simplified problems can be analysed theoretically

⇒ Guide to choosing ∆t and ∆x
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Large Destructive Water Waves

The wave equations may also be used to simulate large
destructive waves
• Waves in fjords, lakes, or the ocean, generated by

- slides
- earthquakes
- subsea volcanos
- meteorittes

Human activity, like nuclear detonations, or slides
generated by oil drilling, may also generate tsunamis

• Propagation over large distances
• Wave amplitude increases near shore
• Run-up at the coasts may result in severe damage
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Tsunamis (in the Pacific)
Japanese word for “large wave in harbor”. Often used as synonym for large destructive
waves generated by slides, earthquakes, volcanos, etc.

Map of older incidents:

Scenario:

Earthquake outside Chile, generates tsunami, propagating at 800 km/h
accross the Pacific, run-up on densly populated coasts in Japan
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Norwegian Tsunamis
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Circles: Major incidents, > 10 killed

Triangles: Selected smaller incidents

Square: Storegga (5000 B.C.)

More information (e.g.,):
math-www.uio.no/avdb/en/Research/geophys/

www.forskning.no/temaer/jordskjelv/

www.aftenposten.no/meninger/

kronikker/article940524.ece
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Why Numerical Simulation?
• Increase the understanding of tsunamis
• Assist warning systems
• Assist building of harbor protection (break waters)
• Recognize critical coastal areas (e.g. move population)
• Hindcast historical tsunamis (assist geologists)
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Simple Mathematical Model

The simplest model for tsunami propagation is the wave equation

∂2u

∂t2
=

∂

∂x

(

H(x, y, t)
∂u

∂x

)

+
∂

∂y

(

H(x, y, t)
∂u

∂y

)

−
∂2H

∂t2

Here H(x, y, t) is the still-water depth (typically obtained from an
electronic map). The t-dependence in H allows a moving bottom to
model, e.g., an underwater slide or earthquake.

A common approximation of the effect of an earthquake (or volcano or
faulting) is to set H = H(x, y) and prescribe an initial disturbance of
the sea surface.
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First: the 1D Case

∂2u

∂t2
=

∂

∂x

(

H(x)
∂u

∂x

)

The term ∂
∂x

(

H(x)∂u
∂x

)

is common for many models of physical
phenomena

• Heat equation with spatially varying conductivity:
ut = ∂

∂x

(

λ(x)∂u
∂x

)

• Heat equation with temperature-dependent conductivity:
ut = ∂

∂x

(

λ(u)∂u
∂x

)

• Pressure distribution in a reservoir:
cpt = ∂

∂x

(

K(x) ∂p
∂x

)

• ....
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Discretisation
• Two-step discretization, first outer operator

∂

∂x

(

H(x)
∂u

∂x

)∣

∣

∣

x=xi

≈
1

h

(

(

H
∂u

∂x

)

∣

∣

∣

x=xi+1/2

−
(

H
∂u

∂x

)

∣

∣

∣

x=xi−1/2

)

• Then inner operator

(

H
∂u

∂x

)

∣

∣

∣

x=xi+1/2

≈ Hi+1/2

ui+1 − ui

h

• And the overall discretization reads

∂

∂x

(

H
∂u

∂x

)

≈
Hi+1/2(ui+1 − ui)−Hi−1/2(ui − ui−1)

h2
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Discretisation, cont’d

Often the function H(x) is only given in the grid points, e.g., from
measurements. Thus we need to define the value at the midpoint

• Arithmetic mean:

Hi+ 1
2

=
1

2
(Hi + Hi+1)

• Harmonic mean:

1

Hi+ 1
2

=
1

2

(

1

Hi
+

1

Hi+1

)

• Geometric mean:
Hi+ 1

2
= (HiHi+1)

1/2
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Oblig: Tsunami Due to a Slide

We are going to study:

∂2u

∂t2
=

∂

∂x

(

H(x, t)
∂u

∂x

)

+
∂2H

∂t2

Some physics for verification:

• Surface elevation ahead of the slide, dump behind

• Initially, negative dump propagates backwards

• The surface waves propagate faster than the slide moves
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Discretisation of 2D Equation

Introduce a rectangular grid: xi = (i− 1)∆x, yj = (j − 1)∆y

d d d d d d d d

d d d d d d d d

d d d d d d d d

d d d d d d d d

d d d d d d d d

(i-1,j) (i,j) (i+1,j)

(i,j+1)

(i,j-1)

Seek approximation u`
i,j on the grid at discrete times t` = `∆t
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Discretisation, cont’d

Approximate derivatives by central differences

∂2u

∂t2
≈

u`+1
i,j − 2u`

i,j + u`−1
i,j

∆t2

Similarly for the x and y derivatives.

Assume for the moment that λ ≡ 1 and that ∆x = ∆y. Then

u`+1
i,j − 2u`

i,j + u`−1
i,j

∆t2
=

u`
i+1,j − 2u`

i,j + u`
i−1,j

∆x2
+

u`
i,j+1 − 2u`

i,j + u`
i,j−1

∆y2

or (with r = ∆t/∆x)

u`+1
i,j = 2u`

i,j − u`−1
i,j + r2

(

u`
i+1,j + u`

i−1,j + u`
i,j+1 + u`

i,j−1 − 4u`
i,j

)

= 2u`
i,j − u`−1

i,j + [∆u]`i,j
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Graphical Illustration
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The Full Approximation

As we have seen earlier, a spatial term like (λuy)y takes the form

1

∆y

(

λ
i,j+

1

2

(

u`
i,j+1 − u`

i,j

∆y

)

− λ
i,j−

1

2

(

u`
i,j − u`

i,j−1

∆y

))

Thus we derive

u`+1
i,j =2u`

i,j − u`−1
i,j

+ r2
x

(

λ
i+

1

2
,j

(

u`
i+1,j − u`

i,j

)

− λ
i−

1

2
,j

(

u`
i,j − u`

i−1,j

)

)

+ r2
y

(

λ
i,j+

1

2

(

u`
i,j+1 − u`

i,j

)

− λ
i,j−

1

2

(

u`
i,j − u`

i,j−1

)

)

=2u`
i,j − u`−1

i,j + [∆u]`i,j

where rx = ∆t/∆x and ry = ∆t/∆y.
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Boundary Conditions

For the 1-D wave equation we imposed u = 0 at the boundary.

Now, we would like to impose full reflection of waves like in a swimming
pool

∂u

∂n
≡ ∇u · n = 0

Assume a rectangular domain. At the vertical (x =constant)
boundaries the condition reads:

0 =
∂u

∂n
= ∇u · (±1, 0) = ±

∂u

∂x

Similarly at the horizontal boundaries (y =constant)

0 =
∂u

∂n
= ∇u · (0,±1) = ±

∂u

∂y
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Boundary Conditions, cont’d

For the heat equation we saw that there are two ways of implementing
the boundary conditions: ghost cells or modified stencils
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Ghost cells
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8

9

10
Modified stencile

Here we will use modified stencil to avoid the need to postprocess the
data to remove ghost cells
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Solution Algorithm

DEFINITIONS: storage, grid, internal points

INITIAL CONDITIONS: ui,j = I(xi, yj), (i, j) ∈ Ī

VARIABLE COEFFICIENT: set/get values for λ

SET ARTIFICIAL QUANTITY u−

i,j: WAVE(u−, u, u−, 0.5, 0, 0.5)

Set t = 0

While t ≤ tstop

t← t + ∆t

(If λ depends on t: update λ)

update all points: WAVE(u+, u, u−, 1, 1, 1)

initialize for next step: u−

i,j = ui,j, ui,j = u+
i,j , (i, j) ∈ I
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Updating Internal and Boundary Points

WAVE(u+, u, u−, a, b, c)

UPDATE ALL INNER POINTS:

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j , (i, j) ∈ I

UPDATE BOUNDARY POINTS:

i = 1, j = 2, . . . , ny − 1;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:i−1→i+1,

i = nx, j = 2, . . . , ny − 1;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:i+1→i−1,

j = 1, i = 2, . . . , nx − 1;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:j−1→j+1,

j = ny , i = 2, . . . , nx − 1;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:j−1→j+1,
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Updating Internal and Boundary Points, cont’d

UPDATE CORNER POINTS ON THE BOUNDARY:

i = 1, j = 1;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:i−1→i+1,j−1→j+1

i = nx, j = 1;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:i+1→i−1,j−1→j+1

i = 1, j = ny ;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:i−1→i+1,j+1→j−1

i = nx, j = ny ;

u+

i,j = 2aui,j − bu−

i,j + c[4u]i,j:i+1→i−1,j+1→j−1
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Fragments of an Implementation

Suppose we have implemented ArrayGen for multidimensional arrays:

ArrayGen(real) up (nx,ny ); // u at time level l+1
ArrayGen(real) u (nx,ny ); // u at time level l
ArrayGen(real) um (nx,ny); // u at time level l−1
ArrayGen(real) lambda (nx,ny); // variable coefficient
:
// Set initial data
:
// Set the artificial um
WAVE (um, u, um, 0.5, 0, 0.5, lambda, dt, dx, dy);

// Main loop
t =0; int step_no = 0;
while ( t <= tstop ) {

t += dt ; step_no++;
WAVE (up, u, um, 1, 1, 1, lambda, dt, dx ,dy);
um = u; u = up;

}
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Central Parts of WAVE

void WAVE(....)
{

// update inner points according to finite difference scheme:
for ( j =2; j<ny; j++)

for ( i =2; i<nx; i++)
up(i , j ) = a∗2∗u(i, j ) − b∗um(i,j)

+ c∗LaplaceU(i,j, i−1,i+1,j−1,j+1);

// update boundary points (modified finite difference schemes):
for ( i =1, j =2; j<ny; j++)

up(i , j )=a∗2∗u(i, j )−b∗um(i,j) +c∗LaplaceU(i,j, i+1,i+1,j−1,j+1);
for ( i=nx, j =2; j<ny; j++)

up(i , j )=a∗2∗u(i, j )−b∗um(i,j) + c∗LaplaceU(i,j, i−1,i−1,j−1,j+1);
:
:

}
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Trick: We Use Macros!
To avoid typos and increase readability we used a macro for the (long) finite difference
formula corresponding to [∆u]i,j :

#define LaplaceU(i,j , im1,ip1,jm1,jp1 ) \
sqr(dt /dx)∗\
( 0.5∗( lambda(ip1,j )+lambda(i , j ))∗(u(ip1, j )−u(i , j )) \
−0.5∗(lambda(i , j )+lambda(im1,j ))∗(u( i , j )−u(im1,j )))\

+sqr(dt/dy)∗\
( 0.5∗( lambda(i , jp1)+lambda(i , j ))∗(u( i , jp1)−u(i , j )) \
−0.5∗(lambda(i , j )+lambda(i , jm1))∗(u( i , j )−u(i , jm1)))

The macro is expanded by the C/C++ preprocessor (cpp).
Macros are handy to avoid typos and increase readability, but should be used with care...

What does the macro do? Consider the simple macro:

#define mac(X) q0(i, j−(X))

When called in the code with mac(i+2), this expands to q0(i,j-i+2)
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Efficiency Issues

Efficiency of plain loops is very important in numerics.
Two things should be considered in our case:

• Loops should be ordered such that u(i, j) is traversed in the
order it is stored. In our ArrayGen we assume that objects are
stored columnwise. Therefore the loop should read:

for ( j =1; j<ny+1; j++)

for ( i =1; i<nx+1; i++)

u( i , j ) = ...

• One should avoid if statements in loops if possible; hence we
will split the loop over all grid points separate loops over inner
and boundary points.

Remark I: Get the code to work before optimizing it
Remark II: Focus on a readable and maintainable code before thinking of efficiency
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Visualising the Results
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Plots generated in Matlab by the following sequence of commands:

>> load W.00.dat;

>> n=sqrt(length(W)); s=reshape(W,n,n);

>> mesh(s); caxis ([0 0.1]);

>> axis ([1 51 1 51 −0.05 0.1]);

>> title ( ’Time t=0.000’);
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Various Ways of Visualisation

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Time t=0.694

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Time t=0.694

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

contour plot color plot

10
20

30
40

50

10

20

30

40

50

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time t=0.694 Time t=0.694

surface mesh lighted surface

INF2340 / Spring 2005 – p. 43



Example: Waves Caused by Earthquake

Physical assumption: long waves in shallow water. Mathematical
model

∂2u

∂t2
= ∇ ·

[

H(x)∇u
]

Consider a rectangular domain

Ω = (sx, sx + wx)× (sy, sy + wy)

with initial (Gaussian bell) function

I(x, y) = Au exp

(

−
1

2

(

x− xc
u

σux

)2

−
1

2

(

y − yc
u

σuy

)2
)

This models an initial elevation caused by an earthquake.
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Example, cont’d

The earthquake takes place near an underwater seamount

H(x, y) = 1−AH exp

(

−
1

2

(

x− xc
H

σHx

)2

−
1

2

(

y − yc
H

σHy

)2
)

Simulation case inspired by the Gorringe Bank southwest of Portugal. Severe ocean
waves have been generated due to earthquakes in this region.

http://www.math.uio.no/avdb/gitec/
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Boundary Conditions
• waves should propagate out of the domain, without being

reflected

• this is difficult to model numerically

• alternative:
∂u

∂n
= 0

which gives full reflection from the boundary

• What? An unphysical boundary condition???

• This is in fact okay for a hyperbolic equation, like the wave
equation; waves travel at a finite speed and the ∂u/∂n = 0

condition is feasible up to the point in time where waves are
reflected from the boundary
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Boundary Conditions, cont’d

Use a circular bell for both I and H and
set

yc
H = yc

u = xc
H = xc

u = 0

Thus we have symmetry about the lines

x = 0 y = 0

surface contour

bottom contour

symmetry line

⇒ can reduce computational domain by a factor 4! Appropriate boundary condition at
symmetry lines:

∂u

∂n
= ∇u · n = 0

If possible: one should always try to reduce computational domain by symmetry
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Computational Results
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