
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Computational Linguistics
(INF2820 — Semantics)

{the(i) ∧ fierce(i) ∧ dog(i) ∧ bark(s, i) }

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

Some Areas of Descriptive Grammar

Phonetics The study of speech signals.

Phonology The study of sound systems.

Morphology The study of word structure.

Syntax The study of sentence structure.

Semantics The study of language meaning.

Pragmatics The study of language use.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (2)

A Tool Towards Understanding: (Formal) Grammar
✬

✫

✩

✪

Wellformedness

• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (3)

A Tool Towards Understanding: (Formal) Grammar
✬

✫

✩

✪

Wellformedness

• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.
✬

✫

✩

✪

Meaning

• Kim gave Sandy the book.

• Kim gave the book to Sandy.

• Sandy was given the book by Kim.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (3)

A Tool Towards Understanding: (Formal) Grammar
✬

✫

✩

✪

Wellformedness

• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.
✬

✫

✩

✪

Meaning

• Kim gave Sandy the book.

• Kim gave the book to Sandy.

• Sandy was given the book by Kim.
✬

✫

✩

✪

Ambiguity

• Kim saw the astronomer with the telescope.

• Have her report on my desk by Friday!

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (3)

Thinking Aloud: Candidate Meaning Representations

The dog barked.

The fierce dog barked.

The fierce dog chased that cat.

The fierce dog chased that angry black cat.

The fierce dog chased that angry black cat in the park.

The fierce dog barked loudly.

The dog is fierce and barked.

The dog that barked is fierce.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (4)

Thinking Aloud: Candidate Meaning Representations

The dog barked.

The fierce dog barked.

The fierce dog chased that cat.

The fierce dog chased that angry black cat.

The fierce dog chased that angry black cat in the park.

The fierce dog barked loudly.

The dog is fierce and barked.

The dog that barked is fierce.

Semantic propositions can be true or false;

(elementary) predications as basic building blocks;

(near) paraphrases should have equivalent semantics.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (4)

Adding Semantics to Unification Grammars

• Logical Form
For each sentence admitted by the grammar, we want to produce a
meaning representation that is suitable for applying rules of inference.

The fierce dog chased that angry cat.

the(i) ∧ fierce(i) ∧ dog(i) ∧ chase(s, i, j)
∧ past(s) ∧ that(j) ∧ angry(j) ∧ cat(j)

• Compositionality
The meaning of each phrase is composed of the meanings of its parts.

• Existing Machinery
Unification is the only means for constructing semantics in the grammar.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (5)

(Elementary) Semantics in Typed Feature Structures

• Semantic content resides in the SEM attribute of every word and phrase:

expression





























HEAD pos
SPR *list*
COMPS *list*
SEM

semantics

[

RSTR *dlist*
]





























• The value of SEM for a sentence is simply a list of predications in the
attribute RSTR, with arguments in predications ‘linked up’ appropriately:



















RSTR

〈









RELN ”the rel”
ARG0 1 entity









,









RELN ”dog rel”
ARG0 1









,

















RELN ”bark rel”
ARG0 situation
ARG1 1

















〉



















• Semantic predications are introduced by lexical entries, and are ap-
pended as grammar rules combine words with other words or phrases.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (6)

Composition: Appending Lists with Unification

• A difference list embeds an open-ended list into a container structure
that provides a ‘pointer’ to the end of the ordinary list at the top level:

A

dlist



























LIST 1
ne-list













FIRST X
REST 2 *list*













LAST 2



























B

dlist



























LIST 3
ne-list













FIRST Y
REST 4 *list*













LAST 4



























• Using the LAST pointer of difference list A we can append A and B by

(i) unifying the front of B (i.e. the value of its LIST feature) into the tail
of A (i.e. the value of its LAST feature); and

(ii) using the tail of B as the new tail for the result of the concatenation.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (7)

An Example: Concatenation of Orthography

















ORTH













LIST 1
LAST 3





























−→

















ORTH













LIST 1
LAST 2





























,

















ORTH













LIST 2
LAST 3





























inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (8)

Notational Conventions

• lists not available as built-in data type; abbreviatory notation in TDL:

< a, b > ≡ [FIRST a, REST [FIRST b, REST *null*]]

• underspecified (variable-length) list:

< a, ... > ≡ [FIRST a, REST *list*]

• difference (open-ended) lists; allow concatenation by unification:

<! a !> ≡ [LIST [FIRST a, REST #tail], LAST #tail]

• built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

• strings (e.g. “chased”) need no declaration; always subtypes of *string*;

• strings cannot have subtypes and are (thus) mutually incompatible.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (9)

Composition: Linking Semantic Arguments

• Each word or phrase carries an associated variable: its INDEX (in SEM);

• When heads select a complement or specifier, they constrain its INDEX

value: a variable of type entity for nouns, a situation variable for verbs;

• Each lexeme also specifies a KEY predication (for complex semantics).

transitive-verb-lxm















































































HEAD verb
SPR.FIRST

[

SEM.INDEX 1
]

COMPS.FIRST

[

SEM.INDEX 2
]

SEM









































INDEX 0 situation

KEY 3

























RELN *string*
ARG0 0
ARG1 1
ARG2 2

























RSTR
〈∣

∣

∣ 3
∣

∣

∣

〉























































































































inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (10)

Composition: Semantics of Phrases

• Every phrase makes the value of its own RSTR attribute be the re-
sult of appending the RSTR lists (of semantic predications) from all its
daughter(s)—by virtue of difference list concatenation;

• Every phrase identifies its semantic INDEX value with the INDEX value of
exactly one of its daughters (which we will call the semantic head);

• As we unify the whole TFS of a complement or specifier with the con-
straints in the syntactic head, unification takes care of semantic linking.

• Head – modifier structures are analogous: the modifier lexically con-
strains the INDEX of the head daughter it will modify; the rules unify the
whole TFS of the head daughter with the MOD value in the modifier.

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (11)

A Linking Example Involving Modification

inf2820 — -may- (oe@ifi.uio.no)

Towards Semantics in Typed Feature Structures (12)

