
Semi-Structured Data
and XML

Contains slides made by Naci Akkök, Pål Halvorsen, Arthur M. Keller, Vera Goebel



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

Information Integration - I

Problem: related data exists in many places.  They talk 
about the same things, but differ in model, 
schema, conventions (e.g., terminology).
How should one retrieve data from different places?

Examples:
In the real world, every bar has its own database.

Some may have relations like beer-price; others have a
Microsoft Word file from which the menu is printed.
Some keep phones of manufacturers but not addresses.
Some distinguish beers and ales; others do not.



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

Information Integration - II

Warehousing:  
Store copies of information from each data source centrally, 
combine into a global schema. Query data stored at the warehouse. 
Reconstruct (recopy) data daily/weekly/monthly, but do not try to 
keep it up-to-date.

Mediation:  
Create a view of all information, but do not make copies. Answer
queries by sending appropriate queries to sources (no local data).



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

Semi-Structured Data
Semi-structured data model allows information from several sources, 
with related but different properties, to be fit together in one whole. 
Thus,  suitable for

integration of databases
sharing information on the Web

Semi-structured data is data that may be irregular or incomplete and 
have a structure that may change rapidly or unpredictably.

It generally has some structure, but does not conform to a fixed schema
“Schemaless” and self-describing, i.e., data carries information about its 
own schema (e.g., in terms of XML element tags)

Characteristics
Heterogeneous
Irregular structure
Large evolving schema

Major application: XML documents



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

Semi-Structured Data: 

Graph Representation

Collection of nodes
Atomic values on leaf nodes
Interior nodes have one or more 
arcs

Nodes connected in a general 
rooted graph structure

Labels on arcs
name of attribute/type
relationship

Example: Beer-Bar-Manufacturer

root

servedAt

barbeer

beer

bud

name

name

miller

manufacturer

name

addr

addr

name

serves

makes madeBy

Joe’s



Extensible Markup Language 
(XML)



<#>INF3100 – 6.3.2006 – Ellen Munthe-Kaas

Data Models & Database System Architectures
- Chronological Overview -

Network Data Models (1964) 

Hierarchical Data Models (1968)

Relational Data Models (1970)

Object-oriented Data Models (~ 1985)

Object-relational Data Models (~ 1990)

Semistructured Data Models (XML 1.0) (~1998)



<#>INF3100 – 6.3.2006 – Ellen Munthe-Kaas

Extensible Markup Language (XML)
Standard of the World Wide Web Consortium (W3C) in 
1998
An XML document is only a file of characters
Similar to HTML, but

HTML uses tags for formatting (e.g., “italic”).
XML uses tags for structure (e.g., “this is an address”).

Two modes:
Well-formed XML allows you to invent your own tags, much 
like labels in semi-structured data.
Valid XML involves a Document Type Definition (DTD) that 
tells the labels and gives a grammar for how they may be 
nested.



<#>INF3100 – 6.3.2006 – Ellen Munthe-Kaas

XML:
Tags

Tags are text surrounded by brackets, i.e., <...>

Tags come in matching pairs, e.g., 
<FOO> is balanced by </FOO>

Nesting allowed (start and end in same range), e.g.,  
<BAR>  <NAME></NAME>  </BAR> 

Unbalanced tags not allowed, e.g., 
<P>, <BR>, and <HR> in HTML



<#>INF3100 – 6.3.2006 – Ellen Munthe-Kaas

XML:
Well-Formed XML

Minimal requirement: 
XML declaration and root tags surrounding entire body

<? XML VERSION = "1.0" STANDALONE = "yes" ?>
<XXX>

.....
</XXX>

NOTE 1:
XML version 

NOTE 2:
there is no DTD specified



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
Well-Formed XML: Example

<?XML VERSION = "1.0" STANDALONE = "yes"?>
<BARS>

<BAR> <NAME>Joe's Bar</NAME>
<BEER> <NAME>Bud</NAME>

<PRICE>2.50</PRICE>
</BEER>
<BEER> <NAME>Miller</NAME>

<PRICE>3.00</PRICE>
</BEER>

</BAR>
<BAR> 

...
</BAR>

</BARS>

NOTE 1:
only balanced tags

NOTE 2:
value between two surrounding tags 

NOTE 3:
nesting within the same range



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
Document Type Definitions (DTD)

Essentially a grammar describing the legal nesting of tags

Intention is that DTD’s will be standards for a domain, 
used by everyone preparing or using data in that domain
Example: a DTD for describing protein structure; a DTD for describing bar 

menus, etc.

Structure of a DTD:
<!DOCTYPE root tag [

<!ELEMENT name (components)>
... more elements ...

]>

The root-tag is used to surround the document which uses 
these rules



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
Elements of a DTD

An element is a name (its tag) and a parenthesized description of 
tags within an element.

Special case: (#PCDATA) after an element name means it is text. 

Each element name is a tag.

Its components are the tags that appear nested within, in the order 
specified.

Multiplicity of a tag is controlled by:

1. * = zero or more of.

2. + = one or more of.

3. ? = zero or one of.

In addition: | = “or.”



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
DTD: Example

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>
<!ELEMENT PRICE (#PCDATA)>

]>

NOTE 1:
BARS is root-tag

NOTE 2:
multiplicity of tags

NOTE 3:
name (and price) has a text value 

NOTE 4:
Inside <BARS>-tag we’ll find zero or 
more <BAR>-tags 

NOTE 5:
a BAR has a name and serves one or more 
beers (which again has components)



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
Using a DTD

To use a DTD, set STANDALONE = "no":
<?XML VERSION = "1.0" STANDALONE = "no"?>

Either
Include the DTD as a preamble, or
Follow the XML tag by a DOCTYPE declaration with the root tag, 
the keyword SYSTEM, and a file where the DTD can be found.



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
Using a DTD: Example

<?XML VERSION = "1.0" STANDALONE = "no"?>

<BARS>
<BAR><NAME>Joe's Bar</NAME>

<BEER> <NAME>Bud</NAME>
<PRICE>2.50</PRICE></BEER>

<BEER> <NAME>Miller</NAME>
<PRICE>3.00</PRICE></BEER>

</BAR>
<BAR> ...

</BARS>

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>
<!ELEMENT PRICE (#PCDATA)>

]>

NOTE 1:
DTD may be in a separate file<!DOCTYPE Bars SYSTEM "bar.dtd">

NOTE 2:
DTD may be included as a 
preamble

NOTE 3:
BARS is root-tag and 
surround the document 
which uses these rules

NOTE 4:
BEER has a name and a price

NOTE 5:
BAR has a name and serves 
one or more beers.



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
Attribute Lists

Opening tags can have “arguments” that appear within the tag, in 
analogy to constructs like <A HREF = ...> in HTML.

Keyword !ATTLIST introduces a list of attributes and their types for 
a given element in the DTD.

Example of declaration:
<!ELEMENT BAR (NAME BEER*)>
<!ATTLIST BAR type = "sushi" | "sports" | "other">

Bar objects can have a type, and the value of that type is limited to 
the three strings shown.

Example of use:
<BAR type = "sports">

. . .

</BAR>



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
ID’s and IDREF’s

ID is used to give a unique name for an element/object

IDREF is used to provide pointers to elements/object 
(by the ID-name), and multiple object references within 
one tag is allowed. IDREFS is used if there might be a set 
of references

Analogous to NAME = foo and HREF = #foo in HTML

Allows the structure of an XML document to be a general 
graph, rather than just a tree.



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

XML:
ID’s and IDREF’s: Example

Let us include in our Bars document type elements that are the manufacturers of 
beers, and have each beer object link, with an IDREF, to the proper manufacturer 
object:

<!DOCTYPE Bars [
<!ELEMENT BARS (BAR*)>
<!ELEMENT BAR (NAME, BEER+)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT MANUFACTURER (ADDR,...)>

<!ATTLIST MANUFACTURER (name ID)>
<!ELEMENT ADDR (#PCDATA)>
<!ELEMENT BEER (NAME, PRICE)>

<!ATTLIST BEER (manf IDREF)>
<!ELEMENT PRICE (#PCDATA)>

]>
...
<MANUFACTURER name= ="X">...</MANUFACTURER>
...
<BEER manf="X"><NAME>Bud</NAME><PRICE>2.50</PRICE></BEER>

NOTE 1:
MANUFACTURER has 
a name-ID

NOTE 2:
BEER has a poiner
to a manufacturer

NOTE 3:
The IDREF value in
BEER equals the ID
value in the 
corresponding 
manufacturer



INF3100 – 7.4.2008 – Ellen Munthe-Kaas

Summary

Semi-structured data

Extensible Markup Language  (XML)


