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Abstract

In this paper we discuss some of the remaining problems in the design of static type
systems for object-oriented programming languages. We look at typing problems
involved in writing a simple interpreter as a good example of a simple problem
leading to difficult typing issues. The difficulties encountered seem to arise in situa-
tions where a programmer desires to simultaneously refine mutually interdependent
classes and object types.

1 Introduction

Early object-oriented languages had weak static type systems (e.g., Simula
67 [1]) or used dynamic rather than static typing (e.g., Smalltalk [I4]). The
static type systems for more recent languages like C++4, Java, and Object
Pascal are more rigid than desired, and others like Beta [16] and Eiffel [19]
require dynamic or link-time checks to guarantee type safety. Nevertheless,
research on the type systems of object-oriented languages (see [3] for a recent
survey) has resulted in significant progress in designing static type systems for
object-oriented languages that are both safe and expressive. However, there
are cases in which standard static type systems for object-oriented languages
are not adequate.

In this expository paper we discuss a seemingly straight-forward problem
— that of defining a program to process (e.g., evaluate, format, etc.) terms of a
simplified programming language. While the language to be processed will be
extremely simple, and there are well-known ways of writing such interpreters,
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the problem becomes more interesting when we attempt to write the program
in such a way that it is easy both to add new expressions to the language and
to add new processors that operate on the terms of the language.

The inspiration for the ideas presented here was a discussion on the Java
Generics mailing list about the expressiveness of different ways of extending
the Java type system. After a discussion by several contributors of possible
ways of solving difficult typing problems involving interpreters, Phil Wadler
[29] laid out what he referred to as “The Expression Problem” and proposed
a solution, which he unfortunately later discovered had a rather subtle error.

The PLT group, originally located at Rice University, but now a rather
distributed group, had also investigated several related questions. For exam-
ple, much of the early part of this paper parallels and in some ways extends
the discussion in Krishnamurthi et al [15] on ways of combining the strong
points of both functional and object-oriented language. However, we point
out some additional pitfalls and present some alternative ideas for solutions
to the difficulties. As another example, Findler and Flatt [I1] discuss similar
problems and provide a solution involving the use of units and mixins. We
examine more carefully the contributions of these and other PLT group papers
later.

We begin in the next section with a brief introduction to the expression
problem. In section |3| we investigate how the expression problem would be
solved in a functional language like ML. The following two sections investi-
gate two approaches to the expression problem in object-oriented languages.
The first is a rather straight-forward approach using what is known as the
Interpreter pattern [I3], while the second uses the more complex Visitor pat-
tern. In each of these sections we examine limitations of each approach and
typing problems that arise when trying to add both new expressions and new
processors on the expressions.

In section [0] we sketch a very different approach to solving the typing
problems that arose with the Visitor pattern. This approach involves the
introduction of syntax to allow the grouping of interface and class definitions
so that they may all be extended simultaneously. Following that we discuss
some related typing problems whose solutions seems to depend on preserving
certain relations between interfaces and classes when extending type groups.
We conclude with a comparison with other work in this area and a summary.

2 The expression problem

The problem that we focus on for this paper is that of writing processors
on simple programming languages. For most of this paper we will confine
ourselves to languages that consist of simple arithmetic expressions.

The first and simplest language consists only of numeric constants and
negations. Define:
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Se€SExp ::=n | -S

where n stands for a natural number. Thus terms of SExp (for “simple ex-
pressions”) are either natural numbers or negations of terms of SExp.
We then expand the language to include sums:

EcExp ::=n| -E| E+E

We will examine ways of representing terms of these languages as values
using both functional and object-oriented programming languages, though our
main focus will be on object-oriented languages. We will also examine code to
process terms of these expression languages. The two examples of processing
terms we will focus on are programs to interpret or evaluate terms of these
languages and programs to convert or “format” the terms as strings for display.

All of these are simple to do in a variety of programming languages. What
makes our problem more challenging is that we wish to start with a program for
interpreting terms of the simple expression language, SExp, and then extend
the program both to add new expressions (e.g., by expanding to language
Exp), and to add new processors (e.g., the term formatter). Moreover, we
would like to perform these extensions by rewriting as little code as possible.
This sounds simple, but we will see that it is more difficult than it first appears.

3 Solving the Expression Problem in ML

While this paper is about static typing problems in solving the Expression
Problem in object-oriented languages, it is instructive to also look at the solu-
tion in a statically-typed functional language, ML. Later we will compare this
solution with the most straightforward solution in an object-oriented language.

ML allows users to define new types in a datatype statement. Thus we
can define a type representing all terms in SExp by writing:

datatype sexp = SConst of int | SNeg of sexp;

This definition parallels the definition of SExp from above[?] By convention in
ML, type names begin with lower case letters. Thus sexp is the name of the
new data type. There are two kinds of values in the type, values representing
constant terms and values representing negations. The identifiers SConst and
SNeg are constructors used to create the different kinds of values in the type.
The SConst constructor is applied to a value of type int (an integer) to create
a value of type sexp, while the SNeg constructor is applied to a value of type
sexp to create a new value of type sexp that represents the negation of the
original. The vertical bar, |, is used to separate the descriptions of the two
types of values of sexp.

A value representing the constant 17 would be written as SConst 17. Sim-
ilarly, the negation of that value would be written as SNeg (SConst 17).

3 ML does not have a type corresponding to natural numbers, so we must use int instead.
However we will avoid using negative integers after the SConst constructor.

3
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Because of the recursive type definition, we can apply as many SNeg’s to a
constant as we like. Thus, SNeg(SNeg(SNeg(SConst 17))) is also a term of
type sexp.

With this definition, it is now easy to write a simple interpreter for the
terms of SExp as represented by values of sexp:

fun sinterp (SConst n) = n
| sinterp (SNeg t) = “(sinterp t);

(The unary minus is written as “~” in ML.) The function sinterp has type
sexp — 1int.

Moreover, it is easy to write new functions to process terms of SExp. For
example, we can write a formatter as follows:

fun sformatter (SConst n) = Int.toString(n)
| sformatter (SNeg t) = "-" ~ (sformatter t);

Function sformatter has type sexp — string.

Unfortunately, it is not at all easy to expand the datatype to represent all
terms of Exp and reuse the code of either interp or formatter. First, the
only way to reuse the definition of the definition of sexp is to use cut and
paste, and even then we must replace the recursive reference to type sexp
after the constructor SNeg with a reference to the new name of the typel’|
Worse luck, if we want to have values of the other datatype remain accessible
later in the program, we must also change the names of the constructors:

datatype exp = Const of int | Neg of exp | Plus of exp*exp;

Thus in the first two cases above, SConst became Const, SNeg became Neg,
and sexp was replaced by exp.

Unfortunately, the only way to extend the functions interp and formatter
is to rewrite them from scratch to include the new cases:

fun interp (Const n) = n
| interp (Neg t) = “(interp t)
| interp (Plus t u) = (interp t) + (interp u);

fun formatter (Const n) = Int.toString(n)
| formatter (Neg t) = "-" ~ (formatter t)
| formatter (Plus t u) = (formatter t) =~ " + " ~
(formatter u);

Because ML does not allow user-defined overloadingE] we also had to change
the names of these modified functions.

While we could have avoided changing the names of constructors and the
function names if we were willing to guarantee that the old and new data

4 There are experimental extensions of ML that add extensible datatypes, but they have
the other problems mentioned.
5 User-defined overloading would make type inference much more difficult in ML.

4
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types would not be used in the same program, there are occasions where both
the new and old definitions both must remain available. In any case we could
not simply extend either the datatype definition or function definitions. They
needed to be rewritten in full.

The above example illustrates the general phenomenon that it is generally
easy to add new functions on a data type in a statically typed functional
language like ML, but functional languages typically provide no support for
adding new cases to a data type and modifying the functions that were defined
on the original data type.

4 Solving the Expression Problem using the Interpreter
Pattern

Because Java is likely to be fairly familiar to most readers, we will use Java syn-
tax for writing object-oriented programs. However it should be fairly straight-
forward to translate our examples to the syntax of other statically type-safe
object-oriented languages. Later we will see how extending Java’s type system
in various ways can increase the expressiveness of the language.

4.1 A simple interpreter in Java

We begin with a straightforward solution to writing an interpreter for SExp
by using the Interpreter pattern [13]. The idea is that each kind of arith-
metic expression is represented by a different class. However, all of the classes
implement the same interface/%]

The datatype definition from ML is now replaced by an interface definition:

public interface Form {
int interp(); // Interpret formula
}

Each of the arithmetic expressions of SExp will be represented by a class that
implements Form{”|

public class ConstForm implements Form {
public int value; // value of constant

public ConstForm(int value) {
this.value = value;

}

6 An interface in Java is like a purely abstract class in C+4. However, a class may imple-
ment many interfaces, but only extend a single superclass. Hence it is more advantageous
to use interfaces than purely abstract classes.

7 To minimize the size of the classes, we have made the instance variables public, even
though that is normally bad style.
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public int interp() { return value; }

class NegForm implements Form {
public Form base; // formula being negated

public NegForm(Form basep) {
base = basep;

by

public int interp() { return (- base.interp()); 72
+

The alternatives in the ML datatype definition have now been replaced
by separate classes that implement the same interface. A value representing
the arithmetic expression “-17” is created and assigned to variable negl7 by
evaluating:

Form negl7 = new NegForm(new ConstForm(17))

We can evaluate that term by writing negl7.interp().
With this design it is easy to add new kinds of arithmetic expressions. For
example we add sums by adding the following class:

public class PlusForm implements Form {
public Form first, second;

public PlusForm(Form firstp, Form secondp) {
first = firstp;
second = secondp;

public int interp() {
return first.interp() + second.interp();
}
}

Unfortunately, it is not as easy to add new operations with this design. In
ML, we simply added a single new function definition that handled all of the
cases. When using the Interpreter pattern, we must extend the interface and
all the classes representing arithmetic expressions to include the new method.

Suppose we wish to add a formatting function. As noted above, we must
extend the interface and all of the classes implementing it:

public interface FForm extends Form {
String formatter();

b
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public class FConstForm extends ConstForm implements FForm {

public FConstForm(int value) {

super (value) ;
b
public String formatter() {
return "" + value;
}
+
class FNegForm extends NegForm implements FForm { ... }

public class FPlusForm extends PlusForm implements FForm {
public FPlusForm(FForm firstp, FForm secondp) {
super (firstp,secondp) ;

3

public String formatter() {
return "(" + ((FForm)first).formatter() + " + " +
((FForm)second) .formatter() + ")";

}

While the extensions to Form and ConstForm are straightforward — involving
just the addition of a new method, the bodies of the method formatter in
classes NegForm and PlusForm require the addition of a type cast. We have
only illustrated the problem in the newly defined class FPlusForm.

The problem is that instance variables first and second have type Form,
whereas they need to have type FForm in order to be guaranteed that they
support the formatter method. As a result, a type error would occur if we
did not include the casts of first and second to FForm in the body of the
method formatter. This problem will tend to arise more generally whenever
we extend a recursively defined data type.@

If the only constructors and methods available were those shown above
then the casts in formatter will always succeed, because the only place in the
code where values are assigned to the instance variables is in the constructor.
Because the parameters of the constructor are declared to be of type FForm, no
values of type Form, but not FForm, can be assigned to the instance variables.
However, if the class Plus had included methods to update the left or right
summand with a parameter of type Form, then the cast in formatter might

8 The recursive nature of the data type is somewhat hidden when written in an object-
oriented language, while it is quite apparent in ML. The problem arises with class definitions
that mention either the class being defined or one of its interfaces in instance variable or
method definitions.
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fail at run time.

We would prefer not to have the casts in the method formatter. First
of all, we would like to guarantee statically that the cast will always succeed.
Second, we prefer to avoid paying the unnecessary run-time cost of dynamic
checks when we know the cast will succeed.

4.2 Awvoiding dynamic casts with LOOJ

We can eliminate the necessity of the type cast by introducing a new ThisType
(often written as MyType in other contexts [3]) type construct. In the language
LOOJ [12], the type ThisType represents the public interface of this inside a
class. Like the self-referential this, the meaning of ThisType changes when
a method involving the type is inherited in a subclass. We illustrate the use
of ThisType by rewriting the PlusForm and FPlusForm classes so that the
instance variables have type ThisType.

public class PlusForm implements Form {
public ThisType first, second;

public PlusForm(ThisType firstp, ThisType secondp) {
first = firstp;
second = secondp;

public int interp() {
return first.interp() + second.interp();

3

public class FPlusForm extends PlusForm implements FForm {
public FPlusForm(ThisType firstp, ThisType secondp) {
super (firstp,secondp) ;

3

public String formatter() {
return "(" + first.formatter() + " + " +
second.formatter() + ")";

by

The types of the instance variables first and second, as well as the parame-
ters firstp and secondp of the constructor for PlusForm have been modified
to have type ThisType. Inside the class ThisType will be interpreted to have
type Form. Moreover, the constructor may be called with parameters that

8
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are actually values of type Form[°| However, the constructor for FPlusForm
may only be invoked with parameters of type FForm because the meaning of
ThisType shifts in the extension.

Classes that mention ThisType are type checked under the relatively weak
assumption that ThisType is an (undetermined) extension of the public inter-
face of the class being defined. Thus, in PlusForm, ThisType is treated as an
extension of Form. As a result, when type checking method interp, the type
checker knows that first and second provide the interp methods. While
we may assign a value of type ThisType to a variable of type Form, it is illegal
to assign a value of type Form to the variable first, because we may only
assume that ThisType is an extension of Form.

Because ThisType is assumed to be an extension of FForm when used inside
class FPlusForm, the invocation first.formatter() in the body of method
formatter is well-typed.

Although we do not have the space to go into details here, the discussion
above implies that if there were a method replaceFirst in class PlusForm
that updated the value of first then its parameter would have to be of type
ThisType rather than Form. As a result, when inherited in FPlusForm, no
difficulties would result.

While the above example only used ThisType as an instance variable, it
can also occur in method parameter and return types. For example, a class
can declare a clone method that returns a value of type ThisType. Similarly,
a compare method might take a parameter of type ThisType.

Message sends of methods that have parameters of type ThisType must
be handled slightly differently from other methods. To be type-safe, we must
know the exact type of the receiver of the message. Thus languages like
LOOM and LOOJ include ways of indicating when we know the exact type
of an object, rather than its type up to extension. In LOOJ, we indicate this
by adding an “@Q” symbol before the type. Thus an object generated from
class FNegForm could be assigned to a variable with type @FForm, but not a
variable of type @Form. See [3J65] for detailed discussion of type-safety issues
with similar languages, and [12] for a more complete discussion of LOOJ.

4.3  FEwvaluating the use of the Interpreter Pattern in solving the Expression
Problem

The Java and LOOJ solutions presented above are based on the Interpreter
Pattern [13]. As shown above, it was easy to add new expressions to the formal
language to be processed with a program based on the Interpreter Pattern.
In going from a program to interpret expressions of SExp to one interpreting
expressions of Exp, we only had to add a new class for the sum expressions.

9 The parameters are given type ThisType so that they may be assigned to the instance
variables, which also have type ThisType.
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It was more difficult to add a new operation on expressions of the lan-
guage. However, we were able to use inheritance to ease the pain to some
extent. We were required to extend the Form interface and each of the classes
implementing it to include the new method (in the case above, formatter).
While the Java solution required type casts when adding new methods, the
LOQOJ solution could be statically type checked.

Finally, we note that with this style of solution, it is difficult to restrict a
variable to only hold values from SExp, for example. It would be possible to
introduce different interfaces for terms representing values of SExp and Exp.
For example, classes ConstForm and NegForm could be defined to implement
interface SForm, while these two classes as well as PlusForm could be defined
to implement interface Form.

The simplest way of accomplishing this would be to define SForm to extend
Form, as then ConstForm and NegForm need only be declared to implement
SForm. While this would be simple to do (just define SForm to extend Form
with no added methods), it would be hard to accomplish if Form and PlusForm
were defined some time after the definition of SForm, ConstForm, and NegForm.
The difficulty is that SForm would have already been defined as having method
interp. If the programmer went back and redefined SForm to extend Form
(rather than directly including the method interp), all of the classes that
mention SForm would have to be recompiled. This is certainly doable if all
of the source code is still around, but requires more modification of existing
code than is desirable.

After the next section, we investigate another approach to solving the
Expression Problem by using the Visitor pattern. We will see that using
the Visitor pattern makes it easier to add new processors on the arithmetic
expression language, but unfortunately, makes it harder to add new kinds of
arithmetic expressions.

4.4 Comparing functional and object-oriented approaches

From the above discussions it is clear that functional languages make it easy
to add new operations on a data type, but generally make it harder to add
new variants. On the other hand, the Interpreter pattern in object-oriented
languages makes it easy to add new variants, but relatively hard to add new
operations.

John Reynolds [26] was one of the first to compare functional and data-
centered approaches to problems. William Cook [9], however, was the first
to explicitly compare ADT style approaches (like that of ML) with that of
object-oriented languages. Several papers from the PLT group [I1JI5] have
also discussed issues revolving around these differences.

Ideally we would like to find a language or design pattern that would make
it easy to add both variants or operations. As a first step, in the next section
we examine the Visitor Pattern for object-oriented languages. We will see

10
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that using the Visitor pattern makes it easier to add new processors on the
arithmetic expression language, but unfortunately, makes it harder to add new
kinds of arithmetic expressions. Nevertheless this will provide a different way
of looking at the problem that will prove useful when we examine type groups.

5 Solving the Expression Problem using the Visitor
Pattern

The Visitor Pattern [I323] represents a way of defining data structures that
have multiple “visitors” operating on them. An important reason for using this
pattern is that it makes it easy to add new operations on the data structures.

5.1 Using the Visitor Pattern

In applying the Visitor pattern to the Expression problem, we will include
a method process with all classes representing arithmetic expressions. The
method process will take a parameter that represents an object with the ca-
pability of performing operations on the arithmetic expressions. Thus if aexp
represents an arithmetic expression and interp0Obj represents an object ca-
pable of interpreting arithmetic expressions, then aexp.process(interp0bj)
would return the value of the expression represented by aexp.

A first attempt at an interface for expressions based on using the Visitor
pattern might look like:

public interface Form {
// Process formula with visitor lp.
Result process(BasicLangProc 1p);

}

Unfortunately, we run into an immediate problem — we need to figure out what
the return type, Result, of process should be. If our language processor is
an interpreter, then clearly process should return type int. However, if it
is a formatter, then it should return type String. This is usually solved in
languages like Java by setting the return type of process to be type Object,
as both integers and strings can be converted to type object (via the Integer
wrapper case for integers). When an expression is processed with a visitor
then the result will need to be converted to the appropriate type via a type
cast.

Because we are interested in static type safety, we wish to use a more
accurate type system that will allow us to avoid type casts, at least as much
as possible. We can do this by adding F-bounded polymorphism to Java as
is done in GJ [2] and LOOJ [12]. These language support the use of bounded
type parameters in classes, interfaces and methods.

The following provide examples of the use of type parameters in interfaces
and methods:

11
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public interface Form {
// Process formula with visitor lp.
public <Result> Result process(BasicLangProc<Result> 1p);

// BasicLangProc: Visitor of consts & negations
public interface BasicLangProc<Result> {

// process constant expression

public Result constCase(ConstForm cf);

// process negation expression
public Result negCase(NegForm nf);
}

The interface BasicLangProc takes a type parameter Result that indicates
the type of the answer that will be returned by the language processor. For
example, an interpreter will return a result of type Integer.[T_O-] Thus the class
representing an interpreter will implement BasicLangProc<Integer>. A for-
matter will return a result of type String, so the class representing the for-
matter will implement BasicLangProc<String>.

Interface Form contains method process, which also has a type parameter
Result. Note that the type parameter for a class is written before the return
type of the method. Thus, method process takes a type parameter Result
and a regular parameter 1p with type BasicLangProc<Result>, returning a
value of type Result.

It will be easiest to explain how the Visitor pattern works by introducing
two classes that implement the Form interface:

public class ConstForm implements Form {
public int value; // value of constant

public ConstForm(int val) { value = val;}
public <Result>Result process(BasicLangProc<Result> 1p) {
return lp.constCase(this); }
public class NegForm<Result> implements Form<Result> {
public Form pos; // formula to be negated

public NegForm<Result>(Form ppos) { pos = ppos; }

public <Result>Result process(BasicLangProc<Result> 1p) {

10.GJ does not support instantiating type variables with primitive types like int so we must
use the wrapper class Integer.

12
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return lp.negCase(this); 1}
}

In both of these classes, the constructor simply initializes an instance vari-
able. In each case the process method is very simple. It simply sends a mes-
sage to the processor parameter, including itself (this) as the actual param-
eter. The ConstForm class sends the message constCase, while the NegForm
class sends the message negCase. Thus the actual message sent to the visitor
(language processor) corresponds to the kind of formula being interpreted.

Because the interface BasicLangProc has a method with a name and pa-
rameter type corresponding to each class of arithmetic expression that im-
plements Form, the message sends are all type correct. A language processor
implementing BasicLangProc thus provides methods to handle each kind of
argument that it needs to process.

The following two classes represent language processors:

class BasicInterp implements BasicLangProc<Integer>{
Integer constCase(ConstForm cf) {
return new Integer(cf.value); }

Integer negCase(NegForm nf) {
return new Integer(
—-(nf.pos.<Integer>process(this)).intValue());}

class BasicFormatter implements BasicLangProc<String> {
String constCase(ConstForm cf) {
return Integer.toString(cf.value);

String negCase(NegForm nf) {
return "-" + nf.pos.<String>process(this); }

}

As we discussed earlier, the class BasicInterp implements the interface
BasicLangProc<Integer> because it returns values of type Integer. The
method constCase in the method has full access to all of the public features of
ConstForm (including the public instance variable cf) because the parameter
to constCase is declared to have type ConstForm.

The method negCase is slightly more complex because it involves an in-
directly recursive call to process the instance variable pos of nf. Because
we do not know whether the value of nf.pos comes from class ConstForm or
NegForm, we cannot predict in advance which process method will actually
be executed.

The following code generates terms of type Form representing the constant
17 and the expression -17, as well as an interpreter, binterp, and formatter,
bformatter. It also shows how each can be used.

13
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new ConstForm(17);
new NegForm(cf);

Form cf
Form nf

BasicLangProc<Integer> binterp = new BasicInterp();
. nf .<Integer>process(binterp) ...;
BasicFormatter<String> bformatter = new BasicFormatter();

. nf .<String>process(bformatter) ...;

For readers not familiar with the use of the Visitor pattern, we provide a
trace of what happens when the process method is sent to nf with binterp
as parameter.

nf.<Integer>process(binterp)
calls
binterp.negCase(this) where this t¢s nf
returns
new Integer(- nf.pos.<Integer>process(this).intVal())
where nf.pos <¢s cf and this <s binterp and
cf.<Integer>process(binterp) returns new Integer(17)
returns
new Integer(-17)

We can see from this trace that flow of control bounces back and forth
between the arithmetic expressions and the language processor. Essentially
the Visitor pattern uses a form of “double dispatch” in order to ensure that the
correct code is chosen based on both static (in the invocation of constCase
and negCase) and dynamic (in the invocation of process) dispatch.

By design, adding new operations (processors) is easy with this design.
What about adding new expressions? Adding a new sum expression involves
not only adding a new class to represent the new kind of expression, but also
requires extending the LangProc interface and all existing processor classes:

interface LangProc<Result>
extends BasicLangProc<Result>{
Result plusCase(PlusForm pf);

public class PlusForm implements Form {
Form first, second; // sum parts
PlusForm(Form fstp, Form sndp) {

first = fstp; second = sndp;

3

14
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<Result>Result process(BasicLangProc<Result> 1p) {
return ((LangProc<Result>)lp.plusCase(this);

3

public class Interp extends BasicInterp
implements LangProc<Integer> {

// return sum of two pieces.
public Integer plusCase(PlusForm pf) {
int firstVal =
(pf.first.<Integer>process(this)).intValue();
int secondVal =
(pf.second.<Integer>process(this)).intValue(Q);

return new Integer(firstVal + secondVal);

public class Formatter extends BasicFormatter
implements LangProc<Integer> {
// return formatted sum.
public Integer plusCase(PlusForm pf) {
return pf.first.<String>process(this) + " + " +
pf.second.<String>process(this);

Extending LangProc, BasicInterp, and BasicFormatter are all relatively
straightforward. Each simply needs a new method to handle objects of class
PlusForm.

Somewhat surprisingly, it is the PlusCase class itself that requires a type
cast for safety. This time the problem is not a matter of updating the type of
an instance variable, as it was for adding operations using the Interpreter pat-
tern. Instead the problem is that the type of the parameter to the process
method does not reflect the added capabilities of interface LangProc. In-
stead, the parameter’s type only guarantees that it supports the constCase
and negCase methods, while the method body requires that it support the
plusCase method.

What is needed here is to be able to specialize the parameter type to
LangProc rather than using BasicLangProc. Unfortunately this is not allowed
in Java, as it could lead to the failure of type safety.

In fact, as pointed out in Krishnamurthi et al [I5] with a different ex-
ample, things get even worse if a visitor needs to generate a new visitor on
recursive calls. This would be required, for example, if our interpreter was ex-

15
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tended to handle function expressions. In that case the interpreter would need
to maintain an environment, and the interpretation of function applications
would generally require the creation of new interpreter objects with updated
environments to provide values for formal parameters when evaluating func-
tion bodies. To handle this either a special This constructor (see [12]) or a
carefully designed Factory class would be required to create new interpreters
inside the methods of both BasicInterpreter and Interpreter. See [I5] for a
further discussion of these problems.

5.2 Can the Visitor pattern be made statically type safe?

As usual we would like to find a way to avoid this type cast so that we can
be guaranteed static type safety. However, we are not allowed to change the
types of parameters to a method. Moreover, even extending the language
with a ThisType construct does not help as the type of the parameter is not
directly related to the class or its interface. The only way that we can change
the type is to make it a type parameter.

Unfortunately, even making the type of the parameter a type variable
does not solve the problem as the parameter of method process is itself
parameterized by Result. Thus rather than using a type variable, we will
need to use a variable that represents a function from types to types.

Moreover, the cause of the typing problem is that different classes im-
plementing Form have different requirements on the kinds of processors that
they need. Thus different kinds of arithmetic expressions will require different
kinds of language processors. Thus as a first step, we provide the following
new interface:

public interface Form<Visitor extends BasicLangProc> {
// Process formula with visitor lp.
<Result> Result process(Visitor<Result> 1lp);

3

The parameter Visitor to Form represents a function from types to types.

Now the classes ConstForm and NegForm can use any processor that has
at least methods constCase and negCase. On the other hand, the class
PlusForm requires processors that also provide the method plusCase. Thus
we define:

public class ConstForm<Visitor extends BasicLangProc>
implements Form<Visitor> {
public Integer val;
public <Result> Result process(Visitor<Result> 1lp) {
return lp.constCase(this); }

public class NegForm<Visitor extends BasicLangProc>
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implements Form<Visitor> {
public Form<Visitor> base;
public <Result> Result process(Visitor<Result> 1lp) {
return lp.negCase(this); 7}

public class PlusForm<Visitor extends LangProc>
implements Form<Visitor> {
public Form<Visitor> left, right;
public <Result> Result process(Visitor<Result> 1lp) {
return lp.plusCase(this); }
+

To provide some intuition as to why these classes should be parameterized
by the type function of the processor, note that if nf is an object from class
NegForm<BasicLangProc> then the instance variable base must have inter-
face Form<BasicLangProc>. In particular, base may not hold a term that
requires anything beyond what is contained in BasicLangProc. Thus base
may certainly not hold a value generated by PlusForm.

On the other hand, if nf is an object from class NegForm<LangProc> then
the instance variable base has type Form<LangProc>, and hence may hold a
value from PlusForm<LangProc>, for example. Thus the type function pa-
rameter to these classes specifies the complexity of the processor required to
interpret the arithmetic expression — including all of its subexpressions.

So far so good. But now it gets worse. How do we write the actual visitors?
Here is a first attempt at the interface BasicLangProc.

interface BasicLangProc<Result> {
// process constant expression
Result constCase(ConstForm<?7?> cf);

// process negation expression
Result negCase(NegForm<??7> nf);

b

Recall that classes ConstForm and NegForm are parameterized by a visitor
interface. Looking at the series of call-backs when the code is executed, it is
clear that the methods need classes that can deal with the same processor as
is being defined. That is, the question marks in the interface definition could
be replaced by BasicLangProc. That would work fine for writing interpreters
and formatters for ConstForm and NegForm, but we would also like to extend
BasicLangProc to LangProc that adds a plusCase method. Inside LangProc
each of the methods needs to take parameters that are formulas that can be
handled by LangProc rather than BasicLangProc, so we need to change the
types of parameters — something that is illegal.

We seem to be caught in a bind here. There are several options that might
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lead to success. One is to introduce a ThisTypeFcn construct that, when
used in a parameterized class, would represent the parameterized interface
of that class. Then ThisTypeFcn could replace the question marks in the
BasicLangProc interface:

public interface BasicLangProc<Result> {
// process constant expression
Result constCase(ConstForm<ThisTypeFcn> cf);

// process negation expression
Result negCase(NegForm<ThisTypeFcn> nf);
}

As with ThisType, the meaning of ThisTypeFcn would change in extensions,
providing the flexibility desired above.

Another alternative that may be helpful is to add more type variables and
support contravariant changes in parameter types (including the bounds in
bounded polymorphism). However, both of these alternatives require fairly
exotic type theories and are arguably too complex for programmers to easily
understand and use.

Solutions are possible that have interface Form parameterized as well by
the type of the result of the visitor, but that is not a satisfactory solution
because then different representations would be necessary to handle visitors
with different result types. For example an object of type Form<Integer>
could handle an interpreter visitor, but not a formatting visitor.

At this time I don’t know how to write a type safe solution to the Expres-
sion problem using the Visitor pattern that avoids type casts and that uses
well understood type systems (including type parameters and ThisType, but
not including higher-order type variables or higher order ThisType). In the
next section we examine a completely different approach that seems to lead
to a more understandable solution.

6 Mutually interdependent object types and classes

One of the problems with the use of the Visitor pattern in the previous section
is that when a new variant of the data type (e.g., a new arithmetic expression)
is added, we must also extend all of the existing processors of the data type.
The typing rules make it difficult to make these additions sequentially without
generating static typing errors. Instead, we would prefer to have them happen
simultaneously, and to have changes to the one show up automatically in
references to the other.

In an earlier paper [8], we introduced the notion of type groups in LOOM.
The type groups allowed us to group together mutually recursive types in
such a way that all could be changed simultaneously Here we sketch how this
same idea could be added to LOOJ, and hence to Java. We concentrate on
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displaying the ideas with a new solution to the Expression problem. Technical
details will be given elsewhere.

The following is a sketch of the code for a type group named Basic. It
incorporates an interpreter and formatter for the the basic language SExp.
Recall that @T is the type representing values whose type is exactly T and not
an extension. The exact types are included in the code below to ensure type

group Basic {

public interface Form {
<Result> Result process(@LangProc<Result> 1lp);
}

public interface LangProc<Result> {
Result constCase(@ConstForm cf);
Result negCase(@NegForm nf);

public class ConstForm implements QForm {
public Integer val;
public <Result> Result process(@LangProc<Result> 1lp) {
return lp.constCase(this); }

public class NegForm implements @Form {
public @Form pos; // value of constant

public <Result> Result process(@LangProc<Result> 1lp) {
return lp.negCase(this); }

public class Interp implements @LangProc<Integer> {
public Integer constCase(@ConstForm cf) {
return new Integer(cf.val);

b

public Integer negCase(@NegForm nf) {
return new Integer(nf.pos.<Integer>process(this));

}

public class Formatter implements @LangProc<String> {
public String constCase(@ConstForm cf) {
return Integer.toString(cf.val);

}
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public String negCase(@NegForm nf) {
return - + nf.pos.<String>process(this);

}

b

There are no surprises in the above code, as the only difference from the
original version using the Visitor pattern given in section is the addition
of exact types.

Adding a case for sum expressions is now easy:

group Full extends Basic {
public interface LangProc<Result> { // extends old
Result plusCase(@PlusForm pf);

}

public class PlusForm implements @Form {
public @Form first, second;

public <Result> Result process(@LangProc<Result> 1lp) {
return lp.plusCase(this);

b

public class Interp implements @LangProc<Integer>{
public Integer plusCase(@PlusForm pf) {
return new Integer(
pf.first.<Integer>process(this)+
pf.second.<Integer>process(this));

public class Formatter implements @LangProc<String> {
public String plusCase(@PlusForm pf) {
return pf.first.<String>process(this) + " + " +
pf.second.<String>process(this);

}

Notice that we have reused the interface name LangProc and class names
Interp and Formatter. Because group Full extends group Basic, interfaces
and classes of Full automatically extend the interfaces and classes of Basic
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that have the same nameE Thus interface LangProc<Result> contains the
constCase and negCase methods from the corresponding interface in Basic,
as well as the newly declared plusCase method.

When new methods are added to an interface in an extending group, all
classes implementing that interface in the original group must be extended in
the extending group in order to satisfy the type checker. Thus, classes Interp
and Formatter must be extended in group Full to include the plusCase
method added in LangProc<Result>.

Alternatively, classes can be omitted from the groups and defined sepa-
rately. In that case we require that the group name be added to the interface
being implemented. For example, we could write

public class BInterp implements Basic.@LangProc<Integer> {
public Integer constCase(@ConstForm cf) {
return new Integer(cf.val);

3

public Integer negCase(@NegForm nf) {
return new Integer(nf.pos.<Integer>process(this));

}
}

public class FInterp extends Blnterp
implements Full.@LangProc<Integer>{

public Integer plusCase(@PlusForm pf) {

return new Integer(
pf.first.<Integer>process(this)+
pf.second.<Integer>process(this));
}

+

This is possible because it is only the interfaces that are mutually referential.
The classes need only refer to the mutually referential interfaces.

The choice of whether or not to include classes in the group will depend
on the intended use. If new operations are to be added later, for example,
it would be most convenient to add those outside of the group rather than
extending the group. If that is not likely, then it is notationally a bit simpler
to include the classes within a group. Either style can be supported.

Type-checking of a class C in the group is done assuming only that the
interfaces and class names from the group mentioned in C are (possibly) ex-
tensions of the definitions appearing in the group. As a result, we can prove
that no type problems can arise with inherited code when a group is extended.

It is straightforward to use the constructs defined in groups. The following

M Tf desired, it would be easy enough to require the extension to be declared explicitly.
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declares some formulas and operations and then invokes the operations on the
formulas.

@Basic.Form bconst = new Basic.ConstForm(17);
@Basic.Form bneg = new Basic.NegForm(bconst);

@Basic.Formatter bformatter = new Basic.Formatter();
. bneg.<String>process(bformatter)) ...;
@Basic.Interp binterp = new Basic.Interp();
. bneg.<Integer>process(binterp) ...;
Q@Full.Form fconl

Q@Full.Form fcon2
Q@Full.Form fplus

new Full.ConstForm(17);
new Full.ConstForm(13);
new Full.PlusForm(fconl,fcon2);

@Full.Interp finterp = new Full.InterpQ);

. plusf.<Integer>process(finterp) ...;

Notice that the type of a formula indicates its group. This is important
because that group determines the strength of the language processor that
must be used with it. For example, a negation of a constant can be operated
on by a term of type Basic.LangProc<Result>, whereas a negation of a sum,
can only be operated on by a term of type Full.LangProc<Result>.

The only unfortunate part of this solution is that we had to seed the
code with occurrences of “@” in order to assure type safety. It would have
been preferable to be able to say that a constant term could be handled by
any operation that had at least the capability of Basic.LangProc<Result>.
However, there are similar examples where removing these exact types leads
to a violation of type safety. In general it is important not to mix and match
components from different type groups as type insecurities pop up quite fre-
quently if that is allowed. The removal of such annotations in specialized cases
is part of our ongoing research.

Type groups seems to be quite helpful in solving this and other problems
involving mutually referential collections of interfaces and classes. Our earlier
paper [8] provided a similar example using the Subject-Observer pattern. We
remark, however, that the type system presented in that paper was much
weaker than it should have been. More recent work has resulted in a system
that allows us to type check more complex examples using type groups.

There is an important advantage of this approach, as opposed to ap-
proaches using some form of bounded polymorphism. That is that when we
use classes and interfaces from the same group, we are guaranteed that we are
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working with components that match exactly. With bounded polymorphism
we get matches up to extension, and subtle problems arise in those cases that
can break what seem to be quite reasonable solutions (see [29/28].

7 Further interesting problems

There are a number of other related problems that are currently not easily
typable with common static type systems for object-oriented languages. The
paper [18] describing the Jiazzi system for adding components to Java sug-
gests some interesting problems that also involve simultaneous extension of
interfaces and classes.

One particularly interesting example involves a system of GUI components
defined as follows:

group GUIComponents {
interface Component { ... }
interface Button extends Component {...}
interface Window extends Component {
void addComponent (Component item) {...}

b
+

Suppose we extend the group to add a setColor method to Component:

group ColorComponents extends GUIComponents {
interface Component {
void setColor(Color newColor);
}
+

We mentioned earlier that any classes that implemented Component in the
group GUIComponents would have to be extended to include the method
setColor. What about the interfaces Button and Window? It would be conve-
nient to assume either that they automatically gained the method setColor
or that the programmer was required to add them to pass the type checker.
That is, we would like to design groups so that they not only preserve uses
of other types and the “implements” relation, but also preserve the “extends”
relation. If that were the case then the following code would be type safe:

ColorComponents.Window clrWindow;
ColorComponents.Button clrButton;

clrWindow.addComponent (clrButton) ;
If ColorComponents.Window did not extend ColorComponents.Component
then the method call in the last line above would be illegal.
If we insisted that interface extension be preserved in group extensions
then we could write bounded polymorphic classes and methods similar to the
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following:

<CompGP extends GUIComponents> void doGUIStuff
(@CompGp .Button button, @CompGp.Window wind) {
. wind.addComponent (button)... }

If not, this sort of polymorphism would not add much expressiveness to the
language.

An interesting question is what relations should be preserved under group
extension.

8 Comparison with other work

As mentioned in the introduction, members of the PLT group originating at
Rice University have written several papers examining typing issues related to
those discussed in this paper — particularly working with systems of interde-
pendent types and classes. For example, Krishnamurthi et al [I5] also compare
the use of the Interpreter pattern with approaches based on the Visitor pat-
tern. They highlight the contrasting difficulties of adding tools with the first
approach and of adding new variants in the second. They present a solution
using the Visitor pattern that is similar to that presented in section and
hence also requires the type cast. They then focus on resolving problems with
generating new visitors for recursive calls to the process method.

Findler and Flatt [11] also discuss the difficulties of extensibility, and pro-
pose a solution based on units and mixins in MzScheme. McDermid et al
[18] describe a preprocessor for Java that allows a programmer to define units
and mixins, and then compile them down to Java. Because they are similar,
we only discuss Jiazzi here. In Jiazzi one can define parameterized packages,
where the parameters represent packages to be linked in later. These param-
eterized packages can be used as “mixins”, essentially allowing classes to be
defined whose supertype is a parameter.

Because these units contain multiple interface and class definitions, they
can be used to define and extend collections of mutually referential classes
and interfaces. When the programmer wishes to use them, these packages can
be explicitly combined using a link statement that states precisely how the
pieces fit together. A link statement may involve cyclic links and may involve
the explicit formation of fixed points. These link statements can get quite
complex, and may prove to be quite difficult to use and understand in practice.
Essentially this is like the difference between working with the generators of
recursive functions and then specifying fixed points of these generators as
opposed to just simply writing down recursive definitions. Making life even
more complex, “upside-down” mixins seem to be required to solve problems
like those discussed in section [l Type checking may be performed modularly
for each unit, with special requirements to determine if link statements are
legal.
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Smaragdakis and Batory [27] independently proposed similar ideas sup-
porting what they term as “collaborations” by using templates in C++ to
generate “mixin layers”. Because C+-+ templates are not type-checked until
they are instantiated, type checking mixins is not an issue.

A potential advantage of using mixins is that they may be instantiated
in different contexts. The corresponding disadvantage is that using mixins
for solving problems such as those discussed here is complicated because the
programmer must specify the desired packages as explicit fixed points formed
from cyclicly composing parameterized packages.

Palsberg and Jay [23] also discuss the Visitor pattern, but focus on making
the Visitor pattern more flexible by using reflection to have the visitor itself
discover the recursive structure of the object being visited.

Type groups are based on a generalization of the type rules associated with
the “MyType” construct that is contained in our earlier languages PolyTOIL
[7] and LOOM [5] (see [3] for a history of the use of MyType constructs in
other languages). The construct MyType represents the type of self or this,
and, like those terms, automatically changes its meaning in subclasses, thus
providing a significant increase in the expressiveness of a static type system.

Type groups were introduced in [8] as a generalization of MyType ob-
tained by introducing a collection of mutually interdependent, but distinct
“MyType”s. When a type group is extended, all of these MyTypes change si-
multaneously. Just as there exist a set of provably safe static typing rules for
languages that have a MyType construct, there also exist a set of provably safe
static typing rules for these collections of mutually interdependent MyTypes.

Type groups add additional expressiveness to the provision of parametric
polymorphism (see also [4]). While they capture some of the expressiveness of
the virtual classes [17] of Beta, they differ from Beta by providing static type
safety, while virtual classes require dynamic checks to guarantee safety.

Type groups are most similar to Ernst’s independently developed Family
Polymorphism [10], but are based on a simpler and better understood type
theory. In particular, the underlying theory of Family Polymorphism is based
on dependent types, which is powerful enough to introduce difficulties with
decidable type checking. The language Scala [2I] appears to have similar
expressiveness, but its type system is provably undecidable.

Eiffel [19] allows covariant changes to the types of instance variables as well
as method parameters and return types. this allows programmers to make the
kind of changes to types that we have shown are necessary to add new cases
and operations using the Visitor pattern. Unfortunately, unrestrained use of
these features leads to programs that are not type safe. Chapter 17 of Meyer
[20] describes three possible solutions to this problem, each of which would
restrict the language in some way. Unfortunately, as far as we know none
have been implemented to see what limits arise in the expressiveness of the
resulting languages. The approach using groups described in this paper could
likely be adapted to make Eiffel statically type safe.
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Palsberg and Schwartzbach [22] also discuss the possibility of extending
mutually recursive classes. In their framework, all references to fixed classes
in a group are assumed to be updated when any in the group is changed. That
is, all classes referenced are treated as generalized MyTypes. They propose
a system for checking such programs, but it depends on a “closed world”
assumption. That is, one may not modularly check the classes in a program.
All code for the complete program must be available to perform the check.

Remy and Vouillon [25] show that the language OCAML [24] can handle
the kinds of problems illustrated by the Subject-Observer pattern and other
examples similar to the Expression problem. The use of OCAML has the ad-
vantage that the different types can be refined separately and then combined.
Much of the advantage is as a result of a combination of the use of row types
(which allow expression of the equivalent of ThisType) and type inference.
A disadvantage of their approach is that the resulting types are essentially
unreadable, being expressed with bounded quantification where the signature
of each type involves type variables from all types involved in the system.
As such it can be difficult for a programmer to easily understand how the
components can be combined.

Nevertheless their solution does allow separate refinement of each of the
components of a system, with assembly into a group of interacting types only
taking place later. Our proposal, on the other hand, takes advantage of the fact
that, in many of these circumstances, the types are refined as a group. This
greatly reduces the complexity of the types as presented to the programmer.

9 Current status and summary

Our current implementation of the language LOOM [5] supports both MyType
and type groups. The more recent LOOJ [12] extension of Java supports
ThisType, but has not yet been extended to implement the groups as outlined
here. We are currently investigating both practical and theoretical issues in-
volved in having groups preserve a broader range of relations among interfaces
and classes in the group.

In summary, type groups provide an expressive, yet statically type safe way
of increasing the expressiveness of object-oriented programming languages, es-
pecially with regard to programs that involve the simultaneous refinement of
collections of mutually interdependent classes and object types. They seem
to be useful in combining polymorphism with design patters that involve mu-
tually referential types. We are currently exploring ways of ensuring that a
variety of relations between interfaces and classes can be preserved during si-
multaneous refinement of groups of mutually referential interfaces and classes.
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