
1

IN
F 3110/4110 -2006

More on ML & Types

Arild B. Torjusen
aribraat@ifi.uio.no

Department of Informatics – University of Oslo

Based on John C. Mitchell’s slides (Stanford U.) ,
adapted by Gerardo Schneider, UiO.

2

IN
F 3110/4110 -2006

ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and
6)

3. 18.09: More on Types, Type Inference and
Polymorphism (chap. 6)

4. 02.10: Control in sequential languages,
Exceptions and Continuations (chap. 8)

3

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety

4

IN
F 3110/4110 -2006

More on list functions

Writing a recursive function is not difficult, but what
about efficiency?

Example: Reverse a list
(remember [1,2] @ [3,4] = [1,2,3,4])

fun reverse [] = []
| reverse (x::xs) = (reverse xs) @ [x] ;

Questions
• How efficient is reverse?
• Can you do this with only one pass through list?

5

IN
F 3110/4110 -2006

More efficient reverse function

fun revAppend ([],ys) = ys
| revAppend (x::xs,ys) = revAppend(xs,(x::ys)) ;

fun rev xs = revAppend(xs,[]);

1
2
3 1

2
3 1

2
3 1

2
3

Tail recursive function!

6

IN
F 3110/4110 -2006

Two factorial functions

Standard recursion
fun fact n =

if n = 0 then 1 else n * fact(n-1) ;

Tail recursive (iteritative)
fun facti(n,p) =

if n = 0 then p else facti(n-1,n*p) ;
fun fact n = facti(n,1) ;

7

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety

8

IN
F 3110/4110 -2006

Higher-order functions (functionals)

Functions are computational values, hence they
can be passed as an argument to another
function

Program are more concise and clear when using
functionals
Functionals on lists have been very popular in
Lisp

A functional is a function that operates on
other functions

9

IN
F 3110/4110 -2006

Curried functions

A function can have only one argument
• tuples are used for more than one argument

Multiple arguments may be realized by giving a function
as a result
• Currying -> after the logician Haskell B. Curry

A function over pairs has type
’a * ’b -> ’c

while a curried function has type
’a -> (’b -> ’c)

A curried function allows partial application: applied to
its 1st argument (of type ’a), it results in a function of
type ’b -> ’c

10

IN
F 3110/4110 -2006

Curried functions

Example: function to add two numbers
- fun pluss(x,y) = x + y ;
val pluss = fn : int * int -> int
- pluss(2,3) ;
val it = 5 : int

Curried version of the same function
- fun cPluss x y = x + y ;
val cPluss = fn : int -> int -> int
- cPluss 2 3 ;
val it = 5 : int
- val addTwo = cPluss 2 ;
val addTwo = fn : int -> int
- addTwo 5 ;
val it = 7 : int

11

IN
F 3110/4110 -2006

Curried functions

Curry and uncurry

- fun curry f x y = f(x,y) ;
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

- fun uncurry f (x,y) = f x y ;
val uncurry = fn : ('a -> 'b -> 'c) -> 'a * 'b -> 'c

12

IN
F 3110/4110 -2006

Example: the map function

Recall that map can be defined as
fun map (f, nil) = nil

| map (f, x::xs) = f(x) :: map (f,xs);
val map = fn : ('a -> 'b) * 'a list -> 'b list

- map (fn x => x+1, [1,2,3]);
val it = [2,3,4] : int list

By currying it, we can define map as
fun map f nil = nil

| map f (x::xs) = (f x) :: map f xs;
val map = fn : ('a -> 'b) -> 'a list -> 'b list

- map (fn x => x+1) [1,2,3];
val it = [2,3,4] : int list

13

IN
F 3110/4110 -2006

More on the map function

We can have a function having as argument a
function which has another function as an
argument
Thanks to currying, we can combine functionals
to work on lists of lists
Example:
- map (map (fn x => x+1)) [[1], [1,2], [1,2,3]];

What does it give as a result?
val it = [[2],[2,3], [2,3,4]] : int list list

14

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety

15

IN
F 3110/4110 -2006

Equality

Equality in (S)ML is defined for many types but
not all – E.g., it is defined for:
• Integers
• Booleans
• Strings
• Characters

What about floating points (reals), compund
types (tuples, records, lists), functions, abstract
data types, etc?

16

IN
F 3110/4110 -2006

Equality on ”reals”

In old versions of SML/NJ it was possible to
compare floating points (reals) equality but not
anymore

Example
- 4.343 = 4.234234;
Error: operator and operand don't agree [equality type required]
operator domain: ''Z * ''Z
operand: real * real
in expression 4.343 = 4.234234

17

IN
F 3110/4110 -2006

Equality

When are two expressions equal?
• The so-called Leibniz’s Principle of the Identity of

Indiscernables:

What is difficult about Leibniz’s Principle?

”e1 and e2 are equal iff they cannot be distinguished by any operation
in the language”

”e1 and e2 are distinct iff there is some way to tell them apart”

18

IN
F 3110/4110 -2006

Problems with Equality

Equality, as defined by Leibniz’s principle, is
undecidable

Also:
Problems with reference cells (aliasing)
Polymorphic equality complicates the compiler

In general, there is no program which determines
whether two expressions are equal in Leibniz’s

sense

19

IN
F 3110/4110 -2006

Equality Types

An equality type is a type admiting equality test
Types admiting equality in (S)ML
• int, bool, char, string
• tuples and records, if all their components admit

equality
• datatypes, if every constructor’s parameter admits

equality

Ex: lists admit equality if the underlying element type
admits equality. Moreover, two lists are equal if they
have the same length and the same elements in
corresponding positions

20

IN
F 3110/4110 -2006

Equality Types (cont.)

Do not admit equality in (S)ML
• reals
• functions
• tuples, records and datatypes not mentioned in the

previous slide
• abstract data types

Equality type variable: ’ ’ a
- fun equals (x,y) = if x = y then true else false ;
stdIn:7.25 Warning: calling polyEqual
val equals = fn : ''a * ''a -> bool

21

IN
F 3110/4110 -2006

Equality: Examples

Equality tests on functions is not computable
since

f = g iff for all x, f(x) = g(x)
There is no ”standard” notion of equality for an
abstract type
• What is supposed to be the equality on trees? Is it

defined structurally? Is it over the list of their
elements? By DFS or BFS?

Mitchell doesn’t cover the material presented on
Equality – Check, for instance, Section 2.9 of
Pucella’s notes

22

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety

23

IN
F 3110/4110 -2006

Modularity: Basic Concepts

Component
• Meaningful program unit

– Function, data structure, module, …

Interface
• Types and operations defined within a component

that are visible outside the component

Specification
• Intended behavior of component, expressed as

property observable through interface

Implementation
• Data structures and functions inside component

24

IN
F 3110/4110 -2006

Example: Function Component

Component
• Function to compute square root

Interface
• function sqrt (float x) returns float

Specification
• If x>1, then sqrt(x)*sqrt(x) ≈ x.

Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}

25

IN
F 3110/4110 -2006

Something on ML Modules

Signatures and structures are part of the
standard ML module system
An ML structure is a module, which is a
collection of:
• Types
• Values
• Structure declarations

Signatures are module interfaces
• Kind of ”type” for a structure

26

IN
F 3110/4110 -2006

Example: Point

Signature definition (Interface)

signature POINT =
sig
type point
val mk_point : real * real -> point (*constructor*)
val x_coord : point -> real (*selector*)
val y_coord : point -> real (*selector*)
val move_p : point * real * real -> point

end;

27

IN
F 3110/4110 -2006

Example: Point (cont.)

Structure definition (Implementation)

structure pt : POINT =
struct
type point = real * real
fun mk_point(x,y) = (x,y)
fun x_coord(x,y) = x
fun y_coord(x,y) = y
fun move_p((x,y):point,dx,dy) = (x+dx, y+dy)

end;
To be able to use the implementation:
- open pt;

28

IN
F 3110/4110 -2006

Example: Point (cont.)

Tests:

- val p1 = mk_point(4.3, 6.56);
val p1 = (4.3,6.56) : point

- y_coord (p1);
val it = 6.56 : real

- move_p (p1, 3.0, ~1.0);
val it = (7.3,5.56) : point

29

IN
F 3110/4110 -2006

Remarks – Further reading

signatures and structures are part of ML Module
system. Modules, in general, will be developed
later on this course. For the present lecture you
might want to read Section 9.3.2 of Mitchell’s
book

30

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety

31

IN
F 3110/4110 -2006

Type

A type is a collection of computational entities
sharing some common property

Examples
• Integers
• [1 .. 100]
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, 5.0}
• Even integers
• {f:int → int | if x>3

then f(x) > x*(x+1)}

Distinction between types and non-types is language
dependent.

32

IN
F 3110/4110 -2006

Uses for types

Program organization and documentation
• Separate types for separate concepts

– E.g., customer and accounts (banking program)

• Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent

meaningless computations such as 3 + true - “Bill”

Support optimization
• Short integers require fewer bits
• Access record component by known offset

33

IN
F 3110/4110 -2006

Type errors

Hardware error
• Function call x() (where x is not a function) may

cause jump to instruction that does not contain a
legal op code

– If x = 512, executing x() will jump to location 512 and begin
execute “instructions” there

Unintended semantics
• int_add(3, 4.5): Not a hardware error, since bit

pattern of float 4.5 can be interpreted as an integer

34

IN
F 3110/4110 -2006

General definition of type error

A type error occurs when execution of program
is not faithful to the intended semantics
Type errors depend on the concepts defined in
the language; not on how the program is
executed on the underlying software
All values are stored as sequences of bits
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern
• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function,

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5

35

IN
F 3110/4110 -2006

Subtyping

Subtyping is a relation on types allowing values
of one type to be used in place of values of
another
• Substitutivity: If A is a subtype of B (A<:B), then

any expression of type A may be used without type
error in any context where B may be used

In general, if f: A -> B, then f may be applied to
x if x: A
• Type checker: If f: A -> B and x: C, then C = A
In languages with subtyping
• Type checker: If f: A -> B and x: C, then C <: A

Remark: No subtypes in ML!

36

IN
F 3110/4110 -2006

Monomorphism vs. Polymorphism

Monomorphic means ”having only one form”, as
opposed to Polymorphic
A type system is monomorphic if each constant,
variable, etc. has unique type
Variables, expressions, functions, etc. are polymorphic if
they ”allow” more than one type

Example. In ML, the identity function fn x => x is
polymorphic: it has infinitely many types!

- fn x => x
val it = fn : 'a -> 'a

Warning! The term ”polymorphism” is used with different
specific technical meanings (more on that later)

37

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety

38

IN
F 3110/4110 -2006

Type safety

A Prog. Lang. is type safe if no program can
violate its type distinction (e.g. functions and integer)

Examples of not type safe language features:
• Type casts (a value of one type used as another type)

– Use integers as functions (jump to a non-instruction or
access memory not allocated to the program)

• Pointer arithmetic
– *(p) has type A if p has type A*
– x = *(p+i) what is the type of x?

• Explicit deallocation and dangling pointers
– Allocate a pointer p to an integer, deallocate the memory

referenced by p, then later use the value pointed to by p

39

IN
F 3110/4110 -2006

Relative type-safety of languages

Not safe: BCPL family, including C and C++
• Casts; pointer arithmetic

Almost safe: Algol family, Pascal, Ada.
• Explicit deallocation; dangling pointers

– No language with explicit deallocation of memory is fully
type-safe

Safe: Lisp, ML, Smalltalk, Java
• Lisp, Smalltalk: dynamically typed
• ML, Java: statically typed

40

IN
F 3110/4110 -2006

Compile-time vs. run-time checking

Lisp uses run-time type checking
(car x) check first to make sure x is list

ML uses compile-time type checking
f(x) must have f : A → B and x : A

Basic tradeoff
• Both prevent type errors
• Run-time checking slows down execution (compiled ML

code, up-to 4 times faster than Lisp code)

• Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type

41

IN
F 3110/4110 -2006

Compile-time type checking

Sound type checker: no program with error is
considered correct
Conservative type checker: some programs
without errors are considered to have errors
Static typing always conservative

if (possible-infinite-run-expression)
then (expression-with-type-error)
else (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)

	More on ML & Types�
	ML lectures
	Outline
	More on list functions	
	More efficient reverse function
	Two factorial functions
	Outline
	Higher-order functions (functionals)
	Curried functions
	Curried functions
	Curried functions
	Example: the map function
	More on the map function
	Outline
	Equality
	Equality on ”reals”
	Equality
	Problems with Equality
	Equality Types
	Equality Types (cont.)
	Equality: Examples
	Outline
	Modularity: Basic Concepts
	Example: Function Component
	Something on ML Modules
	Example: Point
	Example: Point (cont.)
	Example: Point (cont.)
	Remarks – Further reading
	Outline
	Type
	Uses for types
	Type errors
	General definition of type error
	Subtyping
	Monomorphism vs. Polymorphism
	Outline
	Type safety
	Relative type-safety of languages
	Compile-time vs. run-time checking
	Compile-time type checking

