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ML lectures

1. 04.09: The Algol Family and ML (Mitchell’s
chap. 5 + more)

2. 11.09: More on ML & types (chap. 5 and 
6) 

3. 18.09: More on Types, Type Inference and 
Polymorphism (chap. 6)

4. 02.10: Control in sequential languages, 
Exceptions and Continuations (chap. 8)
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Outline 

More recursive examples 
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety
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More on list functions

Writing a recursive function is not difficult, but what 
about efficiency?

Example: Reverse a list
(remember [1,2] @ [3,4] = [1,2,3,4])

fun reverse [] = []
| reverse (x::xs) = (reverse xs) @ [x] ;

Questions
• How efficient is reverse?
• Can you do this with only one pass through list?
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More efficient reverse function

fun revAppend ([],ys) = ys 
| revAppend (x::xs,ys) = revAppend(xs,(x::ys)) ;

fun rev xs = revAppend(xs,[]);

1
2
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2
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2
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2
3

Tail recursive function!
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Two factorial functions

Standard recursion
fun fact n = 

if n = 0 then 1 else n * fact(n-1) ; 

Tail recursive (iteritative)
fun facti(n,p) =

if n = 0 then p else facti(n-1,n*p) ; 
fun fact n = facti(n,1) ; 



7

IN
F 3110/4110 -2006

Outline

More recursive examples
More on higher-order functions
Something about equality
Something on the ML module system
Types in programming
Type safety
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Higher-order functions (functionals)

Functions are computational values, hence they
can be passed as an argument to another
function

Program are more concise and clear when using
functionals
Functionals on lists have been very popular in 
Lisp

A functional is a function that operates on 
other functions
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Curried functions

A function can have only one argument
• tuples are used for more than one argument

Multiple arguments may be realized by giving a function
as a result
• Currying -> after the logician Haskell B. Curry

A function over pairs has type
’a * ’b -> ’c

while a curried function has type
’a -> (’b -> ’c)

A curried function allows partial application: applied to 
its 1st argument (of type ’a), it results in a function of
type ’b -> ’c
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Curried functions

Example: function to add two numbers
- fun  pluss(x,y) = x + y ;
val pluss = fn : int * int -> int
- pluss(2,3) ; 
val it = 5 : int

Curried version of the same function
- fun cPluss x y = x + y ; 
val cPluss = fn : int -> int -> int
- cPluss 2 3 ; 
val it = 5 : int
- val addTwo = cPluss 2 ;
val addTwo = fn : int -> int
- addTwo 5 ; 
val it = 7 : int
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Curried functions

Curry and uncurry 

- fun curry f x y = f(x,y) ; 
val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

- fun uncurry f (x,y) = f x y  ; 
val uncurry = fn : ('a -> 'b -> 'c) -> 'a * 'b -> 'c
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Example: the map function

Recall that map can be defined as
fun map (f, nil) = nil  

| map (f, x::xs) = f(x) :: map (f,xs);
val map = fn : ('a -> 'b) * 'a list -> 'b list

- map (fn x => x+1, [1,2,3]);
val it = [2,3,4] : int list

By currying it, we can define map as
fun map f nil = nil

| map f (x::xs) = (f x) :: map f xs;
val map = fn : ('a -> 'b) -> 'a list -> 'b list

- map (fn x => x+1)  [1,2,3];
val it = [2,3,4] : int list
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More on the map function

We can have a function having as argument a 
function which has another function as an 
argument
Thanks to currying, we can combine functionals
to work on lists of lists
Example:
- map (map (fn x => x+1))  [[1], [1,2], [1,2,3]];

What does it give as a result?
val it = [[2],[2,3], [2,3,4]] : int list list
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Equality

Equality in (S)ML is defined for many types but
not all – E.g., it is defined for:
• Integers
• Booleans
• Strings
• Characters

What about floating points (reals), compund
types (tuples, records, lists), functions, abstract
data types, etc?
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Equality on ”reals”

In old versions of SML/NJ it was possible to 
compare floating points (reals) equality but not 
anymore

Example
- 4.343 = 4.234234;
Error: operator and operand don't agree [equality type required]
operator domain: ''Z * ''Z
operand:         real * real
in expression 4.343 = 4.234234
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Equality

When are two expressions equal?
• The so-called Leibniz’s Principle of the Identity of

Indiscernables:

What is difficult about Leibniz’s Principle?

”e1 and e2 are equal iff they cannot be distinguished by any operation 
in the language”

”e1 and e2 are distinct iff  there is some way  to tell them apart”
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Problems with Equality

Equality, as defined by Leibniz’s principle, is 
undecidable

Also:
Problems with reference cells (aliasing)
Polymorphic equality complicates the compiler

In general, there is no program which determines 
whether two expressions are equal in Leibniz’s 

sense
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Equality Types

An equality type is a type admiting equality test
Types admiting equality in (S)ML
• int, bool, char, string
• tuples and records, if all their components admit

equality
• datatypes, if every constructor’s parameter admits

equality

Ex: lists admit equality if the underlying element type 
admits equality. Moreover, two lists are equal if they
have the same length and the same elements in 
corresponding positions
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Equality Types (cont.)

Do not admit equality in (S)ML
• reals
• functions
• tuples, records and datatypes not mentioned in the

previous slide
• abstract data types

Equality type variable: ’ ’ a
- fun equals (x,y) = if x = y then true else false ;
stdIn:7.25 Warning: calling polyEqual
val equals = fn : ''a * ''a -> bool
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Equality: Examples

Equality tests on functions is not computable
since

f = g   iff for all x,  f(x) = g(x) 
There is no ”standard” notion of equality for an 
abstract type
• What is supposed to be the equality on trees? Is it 

defined structurally? Is it over the list of their
elements? By DFS or BFS? 

Mitchell doesn’t cover the material presented on 
Equality – Check, for instance, Section 2.9 of 
Pucella’s notes
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Modularity: Basic Concepts

Component
• Meaningful program unit

– Function, data structure, module, …

Interface
• Types and operations defined within a component 

that are visible outside the component

Specification
• Intended behavior of component, expressed as 

property observable through interface 

Implementation
• Data structures and functions inside component
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Example: Function Component

Component
• Function to compute square root

Interface
• function sqrt (float x) returns float

Specification
• If x>1, then sqrt(x)*sqrt(x) ≈ x.

Implementation
float sqroot (float x){

float y = x/2; float step=x/4; int i;
for (i=0; i<20; i++){if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}
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Something on ML Modules

Signatures and structures are part of the
standard ML module system
An ML structure is a module, which is a 
collection of:
• Types
• Values
• Structure declarations

Signatures are module interfaces
• Kind of ”type” for a structure
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Example: Point

Signature definition (Interface)

signature POINT = 
sig
type point
val mk_point : real * real -> point  (*constructor*)
val x_coord : point -> real             (*selector*)
val y_coord : point -> real             (*selector*)
val move_p : point * real * real -> point

end;
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Example: Point (cont.)

Structure definition (Implementation)

structure pt : POINT = 
struct
type point = real * real  
fun mk_point(x,y) = (x,y)
fun x_coord(x,y) = x
fun y_coord(x,y) = y 
fun move_p((x,y):point,dx,dy) = (x+dx, y+dy)

end;
To be able to use the implementation:
- open pt;
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Example: Point (cont.)

Tests:

- val p1 = mk_point(4.3, 6.56);
val p1 = (4.3,6.56) : point

- y_coord (p1);
val it = 6.56 : real

- move_p (p1, 3.0, ~1.0);
val it = (7.3,5.56) : point
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Remarks – Further reading

signatures and structures are part of ML Module
system. Modules, in general, will be developed
later on this course. For the present lecture you
might want to read Section 9.3.2 of Mitchell’s
book
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Type

A type is a collection of computational entities 
sharing some common property

Examples
• Integers
• [1 .. 100]
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, 5.0}
• Even integers
• {f:int → int | if x>3   

then f(x) > x*(x+1)}

Distinction between types and non-types is language 
dependent.
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Uses for types 

Program organization and documentation
• Separate types for separate concepts

– E.g., customer and accounts (banking program) 

• Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent 

meaningless computations such as  3 + true - “Bill”

Support optimization
• Short integers require fewer bits
• Access record component by known offset
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Type errors

Hardware error
• Function call x() (where x is not a function) may 

cause jump to instruction that does not contain a 
legal op code 

– If x = 512, executing x() will jump to location 512 and begin 
execute “instructions” there 

Unintended semantics
• int_add(3, 4.5): Not a hardware error, since bit 

pattern of float 4.5 can be interpreted as an integer
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General definition of type error

A type error occurs when execution of program 
is not faithful to the intended semantics
Type errors depend on the concepts defined in 
the language; not on how the program is 
executed on the underlying software
All values are stored as sequences of bits
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern 
• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function, 

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5
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Subtyping

Subtyping is a relation on types allowing values 
of one type to be used in place of values of 
another
• Substitutivity: If A is a subtype of B (A<:B), then 

any expression of type A may be used without type 
error in any context where B may be used

In general, if f: A -> B, then f may be applied to 
x if x: A
• Type checker: If f: A -> B and x: C, then C = A
In languages with subtyping
• Type checker: If f: A -> B and x: C, then C <: A

Remark: No subtypes in ML!
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Monomorphism vs. Polymorphism

Monomorphic means ”having only one form”, as 
opposed to Polymorphic
A type system is monomorphic if each constant, 
variable, etc. has unique type
Variables, expressions, functions, etc. are polymorphic if 
they ”allow” more than one type

Example. In ML, the identity function fn x => x is  
polymorphic: it has infinitely many types!

- fn x => x
val it = fn : 'a -> 'a

Warning! The term ”polymorphism” is used with different 
specific technical meanings (more on that later) 
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Type safety

A Prog. Lang. is type safe if no program can 
violate its type distinction (e.g. functions and integer)

Examples of not type safe language features:
• Type casts (a value of one type used as another type)

– Use integers as functions (jump to a non-instruction or 
access memory not allocated to the program)

• Pointer arithmetic
– *(p)               has type A if p has type A*
– x = *(p+i)      what is the type of x?

• Explicit deallocation and dangling pointers
– Allocate a pointer p to an integer, deallocate the memory 

referenced by p, then later use the value pointed to by p 
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Relative type-safety of languages 

Not safe: BCPL family, including C and C++
• Casts;  pointer arithmetic

Almost safe: Algol family, Pascal, Ada. 
• Explicit deallocation; dangling pointers

– No language with explicit deallocation of memory is fully 
type-safe

Safe: Lisp, ML, Smalltalk, Java 
• Lisp, Smalltalk: dynamically typed 
• ML, Java: statically typed
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Compile-time vs. run-time checking

Lisp uses run-time type checking
(car x) check first to make sure x is list

ML uses compile-time type checking
f(x) must have f : A → B and x : A

Basic tradeoff
• Both prevent type errors
• Run-time checking slows down execution (compiled ML 

code, up-to 4 times faster than Lisp code)

• Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type 
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Compile-time type checking

Sound type checker: no program with error is 
considered correct
Conservative type checker: some programs 
without errors are considered to have errors
Static typing always conservative 

if  (possible-infinite-run-expression) 
then  (expression-with-type-error)
else   (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)
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