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Critical Regions

Four conditions to provide mutual exclusion
1. No two threads simultaneously in critical region
2. No assumptions made about speeds or numbers of CPUs

3. No thread running outside its critical region may block another thread

4. No thread must wait forever to enter its critical region



Critical Regions

Mutual exclusion using critical regions

Recall Processes and Threads

• Process

– Address space

– Program text and data
– Open files

– Child process IDs

– Alarms

– Signal handlers

– Accounting information

• Implemented in kernel

• Thread

– Program counter

– Registers
– Stack

• Implemented in kernel or in 
user space

• Threads are the scheduled 
entities



Producer-Consumer Problem

• Main problem description
– Two threads
– Different actions in the critical region
– The consumer can not enter the CR more often than 

the producer

• Two sub-problems
– Unbounded PCP: the producer can enter the CR as 

often as it wants
– Bounded PCP: the producer can enter the CR only N

times more often than the consumer

Unbounded PCP

Rules for the queue Q:

•No Get when empty

•Q shared, so must have 
mutex between Put and Get

Producer

PUT (msg) GET (buf)

Consumer

Q



Recall Mutexes

• Can be acquired and released
– Only one thread can hold one mutex at a time
– A second thread trying to acquire must wait

• Mutexes
– Can be implemented using busy waiting
– Simpler with advanced atomic operations

• Disable interrupts, TSL, XCHG, …

– Still many approaches using busy waiting
– Better implemented using system calls block & unblock

Bounded PCP

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have 
mutex between Put and 
Get

B

out

in

Capacity: N

Producer

PUT (msg)
GET (buf)

Consumer



Mutex Solution

Get ( msg)  {
acqui r e( mut ex) ;
whi l e( empt y)  {

r el ease( mut ex) ;
acqui r e( mut ex) ;

}
<get >
r el ease( mut ex) ;

}

Put ( msg)  {
acqui r e( mut ex) ;
<put >
r el ease( mut ex) ;

}

Get ( msg)  {
acqui r e( mut ex) ;
whi l e( empt y)  {

r el ease( mut ex) ;
acqui r e( mut ex) ;

}
<get >
r el ease( mut ex) ;

}

Put ( msg)  {
acqui r e( mut ex) ;
whi l e( f ul l )  {

r el ease( mut ex) ;
acqui r e( mut ex) ;

}
<put >
r el ease( mut ex) ;

}

Unbounded PCP

Bounded PCP

Busy waiting

Two Kinds of Synchronization

Acquire (id); Release (id);

Acquire (id);

<CR>

Release (id);

Acquire (id);

<CR>

Release (id);

MUTEX

CONDITION 
SYNCHRONIZATION

SIGNAL

LOCK is initially OPEN

LOCK is initially CLOSED

Acquire will 
block first caller 
until Release

Acquire will let first 
caller through, and 
then block next until 
Release



Sleep and Wakeup / Signal and Wait

• Wait (cond)

– Insert(caller, 
cond_queue)

– Block this thread

• Signal (cond)

– Unblock first in 
cond_queue, or just 
return if empty

No counting, unused signals are ignored
Wait is atomic

Unbounded PCP using Signal and Wait

whi l e( 1)  {
<pr ocess>
acqui r e( mut ex) ;

<i nser t >
r el ease( mut ex) ;
s i gnal ( cond) ;

}

whi l e( 1)  {
i f ( empt y)

wai t ( cond) ;
acqui r e( mut ex) ;

<r emove>
r el ease( mut ex) ;
<pr ocess>

}

Rules for the queue Q:

•No Get when empty

•Q shared, so must have mutex
between Put and Get

Producer

PUT (msg):
GET (buf):

Consumer

Q



Unbounded PCP using Signal and Wait

whi l e( 1)  {
<pr ocess>
acqui r e( mut ex) ;

<i nser t >
r el ease( mut ex) ;
s i gnal ( cond) ;

}

whi l e( 1)  {
i f ( empt y)

wai t ( cond) ;
acqui r e( mut ex) ;

<r emove>
r el ease( mut ex) ;
<pr ocess>

}
Lost signal

Producer

PUT (msg):
GET (buf):

Consumer

Q

Unbounded PCP using Signal and Wait

whi l e( 1)  {
<pr ocess>
acqui r e( mut ex) ;

<i nser t >
si gnal ( cond) ;
r el ease( mut ex) ;

} Producer can’t enter

Producer

PUT (msg):
GET (buf):

Consumer

Q

whi l e( 1)  {
acqui r e( mut ex) ;

whi l e( empt y)  {
wai t ( cond) ;
r el ease( mut ex) ;
acqui r e( mut ex) ;

}
<r emove>

r el ease( mut ex) ;
<pr ocess>

}



Unbounded PCP using Signal and Wait

whi l e( 1)  {
<pr ocess>
acqui r e( mut ex) ;

<i nser t >
si gnal ( cond) ;
r el ease( mut ex) ;

}

Lost signal

Producer

PUT (msg):
GET (buf):

Consumer

Q

whi l e( 1)  {
acqui r e( mut ex) ;

whi l e( empt y)  {
r el ease( mut ex) ;
wai t ( cond) ;
acqui r e( mut ex) ;

}
<r emove>

r el ease( mut ex) ;
<pr ocess>

}

Threads wait for …

• Access to a critical region
– Mutex
– Semaphore

• A condition to be fulfilled
– Condition variable
– Barrier
– Semaphore



Semaphores

Semaphores (Dijkstra, 1965)

• Down or Wait or “P”
– Atomic
– Decrement semaphore 

value by 1
– Block if not positive

P(s) {
if (--s < 0)

Block(s);
}

V(s) {
if (++s <= 0)

Unblock(s);
}

• Up or Signal or “V”
– Atomic
– Increment semaphore by 1
– Wake up a waiting thread if 

any

s is NOT accessible through other means than calling P and V

Can get negative s: counts number of waiting threads

prolaag verhoog



Semaphores w/Busy Wait

V(s): 

s++;

P(s): 

whi l e ( s <= 0)  { } ;
s- - ;

ATOMIC

• Starvation possible?

• Does it matter in practice?

The Structure of a Semaphore

sem_wait_queue

Threads waiting to get return after calling P (s) when s was <=0s

V (s) P (s)

integer

+1 -1

Unblock
(FIFO is fair)

Block

•Atomic: Disable interrupts

•Atomic: P() and V() as System calls

•Atomic: Entry-Exit protocols



Using Semaphores

s := 1;

P (s);
<CR>

V(s);

P (s);
<CR>

V(s);

s := 11;

P( s) ;
<max 11>

V( s) ;

P( s) ;
<max 11>

V( s) ;

s := 0;

P (s); V (s);

A blocks until B says V

A B

One thread gets in, next 
blocks until V is executed

Up to 11 threads can pass P, the 
ninth will block until V is said by 
one of the eight already in there

NB: remember to set the
initial semaphore value!

“ The Signal” “ The Mutex”

“ The Team”

Simple to debug?

P (x);

V (y);

…..
P (y);

V (x);

…..

What will happen?

x := 0;

y := 0;

A B

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL
(“No milk”)



Examples

Unbounded PCP using Semaphores

PUT (msg):

P(mutex);
<insert>
V(mutex);
V(nonempty);

GET (buf):

P(nonempty);
P(mutex);
<remove>
V(mutex);

One semaphore for each 
condition we must wait
for to become TRUE:

•Q empty: nonempty:=0;

•Q mutex: mutex:=1;

Rules for the queue Q:

•No Get when empty

•Q shared, so must have 
mutex between Put and 
Get

•Is Mutex needed when only 1 P and 1 C?

•PUT at one end, GET at other end

Producer

PUT (msg):
GET (buf):

Consumer

Q



Bounded PCP using Semaphores

PUT (msg):
P(nonfull);
P(mutex);
<insert>
V(mutex);
V(nonempty);

GET (buf):
P(nonempty);
P(mutex);
<remove>
V(mutex);
V(nonfull);

out

in

Capacity: N

B

Producer

PUT (msg):
GET (buf):

Consumer

One semaphore for each 
condition we must wait
for to become TRUE:

•B empty: nonempty:=0;

•B full: nonfull:=N

•B mutex: mutex:=1;

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have 
mutex between Put and 
Get

•PUT at one end, GET at other end

Dining Philosophers Problem

• Five philosopher
• Five dishes
• Five forks
• But a philosopher needs two forks for eating

• Usually the philosophers think, when they are hungry 
the try to eat

• How to prevent all philosophers from starving



Dining Philosophers

•Each: 2 forks to eat

•5 philosophers: 10 forks to let all 
eat concurrently

•5 forks: 2 can eat concurrently

i

i i+1
i+1

states
• Free

Get L; Get R if free else Put L;
•Starvation possible

Mutex on whole table:
•1 can eat at a time

P( mut ex) ;      
eat ;

V( mut ex) ;

Ti

Get L; Get R;
•Deadlock possible

P( s( i ) ) ;
P( s( i +1) ) ;

eat ;
V( s( i +1) ) ;

V( s( i ) ) ;
S(i) = 1 initially 

Ti

Ti

Dining Philosophers

i

i i+1
i+1

states
•Thinking

•Eating

•Want

Whi l e ( 1)  {
<t hi nk>
ENTRY;

<eat >
EXI T;

}  

Ti

S() = 0 initially

P( mut ex) ;
st at e( i ) : =Want ;
i f  ( s t at e( i - 1)  ! =Eat i ng AND st at e( i +1)  ! = Eat i ng)  
{ / * Saf e t o eat * /         

s t at e( i ) : =Eat i ng;  
V( s( i ) ) ;    / * Because  * /     }

V( mut ex) ;     
P( s( i ) ) ;  / *  I ni t  was 0! !

We or  nei ghbor  must  say V( i )  t o us! * /

P( mut ex) ;
st at e( i ) : =Thi nki ng;
i f  ( s t at e( i - 1) =Want  AND st at e( i - 2)  

! =Eat i ng)
{

st at e( i - 1) : =Eat i ng;
V( s( i - 1) ) ;   / * St ar t  Lef t  nei ghbor * /    

}
/ * Anal ogue f or  Ri ght  nei ghbor * /
V( mut ex) ;

To avoid starvation they could look after each other:

•Entry: If L and R is not eating we can

•Exit: If L (R) wants to eat and L.L (R.R) is not 
eating we start him eating



Dining Philosophers

i

i i+1
i+1

s

Get L; Get R;
•Deadlock possible

P( s( i ) ) ;
P( s( i +1) ) ;

eat ;
V( s( i +1) ) ;

V( s( i ) ) ;

S(i) = 1 initially 

T1, T2, T3, T4:

T5

P( s( i ) ) :
P( s( i +1) ) ;

<eat >
V( s( i +1) ) ;

V( s( i ) ) ;

P( s( 1) ) ;
P( s( 5) ) ;

<eat >
V( s( 5) ) ;

V( s( ( 1) ) ;

•Remove the danger of 
circular waiting (deadlock)

•T1-T4: Get L; Get R;

•T5: Get R; Get L; 

Can we in a simple way do better 
than this one?

•Non-symmetric solution. Still 
quite elegant

Readers and Writers Problem

• Several threads
• Shared data in a critical region

• Sometimes a thread wants to read the data
• Sometimes a thread wants to change the data

• Readers can enter a critical region together
• Writers can not enter a critical region together



The Readers and Writers Problem

One solution to the readers and writers problem
But too many readers can starve writers

P( mut ex) ;

r c = r c+1;

i f ( r c==1)  P( db) ;

V( mut ex) ;

<r ead dat a>

P( mut ex) ;

r c = r c- 1;

i f ( r c==0)  V( db) ;

V( mut ex) ;

P( db) ;

<wr i t e dat a>

V( db) ;

whi l e( 1)  {

<do t hi ngs>

i f ( you_want )

READ;

el se

WRI TE;

}

The Readers and Writers Problem

Another solution to the readers and writers problem

P( st opr eader s) ;

P( mut ex) ;

r c = r c+1;

i f ( r c==1)  P( db) ;

V( mut ex) ;

V( st opr eader s) ;

<r ead dat a>

P( mut ex) ;

r c = r c- 1;

i f ( r c==0)  V( db) ;

V( mut ex) ;

P( st opr eader s) ;

P( db) ;

V( st opr eader s) ;

<wr i t e dat a>

V( db) ;

whi l e( 1)  {

<do t hi ngs>

i f ( you_want )

READ;

el se

WRI TE;

}



Other wait-and-signal mechanisms

Event Count (Reed 1977)

• Init( ec )

– Set the eventcount to 0
• Read( ec )

– Return the value of eventcount ec

• Advance( ec )

– Atomically increment ec by 1

• Await( ec, v )

– Wait until ec >= v



Bounded PCP with Event Count

• Does this work for more than one producer and 
consumer?

• No, we will get multiple events happening, need a 
sequencer

pr oducer ( )  {
i nt next  = 0;

whi l e ( 1)  {
pr oduce an i t em
next++;
await(out, next - N);
put  t he i t em i n buf f er ;
advance(in);

}
}

consumer ( )  {
i nt next  = 0;

whi l e (  1 )  {
next++;
await(in, next);
t ake an i t em f r om buf f er ;
advance(out);
consume t he i t em;

}
}

in=out=0;
out

in

Capacity: N

B

Condition Variables

• Wait (cond, mutex)

– Insert(caller, 
cond_queue)

– V(mutex)
– Block this thread

– When unblocked, 
P(mutex)

• Signal (cond)

– Unblock first in 
cond_queue, or just 
return if empty

No counting, unused signals are ignored
Insert, Unlock and Block not interrupted



Unbounded PCP using Condition Variable

whi l e( 1)  {
<pr ocess>
P( mut ex) ;

<i nser t >
si gnal ( cond) ;
V( mut ex) ;

} No problems

Producer

PUT (msg):
GET (buf):

Consumer

Q

whi l e( 1)  {
P( mut ex) ;

whi l e( empt y)  {
wai t ( cond, mut ex) ;

}
<r emove>

V( mut ex) ;
<pr ocess>

}

Unbounded PCP using Condition Variable

No problems either

Producer

PUT (msg):
GET (buf):

Consumer

Q

whi l e( 1)  {
<pr ocess>
P( mut ex) ;

<i nser t >
si gnal ( cond) ;
V( mut ex) ;

}

whi l e( 1)  {
P( mut ex) ;

whi l e( empt y)  {
wai t ( cond, mut ex) ;

}
<r emove>

V( mut ex) ;
<pr ocess>

}

whi l e( 1)  {
P( mut ex) ;

whi l e( empt y)  {
wai t ( cond, mut ex) ;

}
<r emove>

V( mut ex) ;
<pr ocess>

}



Emulations

• Not all wait-and-signal mechanisms exist in all 
operating systems or thread packages

• Windows has no native condition variables
– But semaphores (and mutexes)

• Some Unix-like systems have no native semaphores
– But condition variables and mutexes

• Emulations

wai t ( cond, mut ex)  {
P( cond. l ock) ;
cond. wai t er s+=1;
V( cond. l ock) ;
V( mut ex) ;
P( cond. si gnal ) ;
P( cond. l ock) ;
cond. wai t er s- =1;
V( cond. l ock) ;
P( mut ex) ;

}

s i gnal ( cond)  {
P( cond. l ock) ;
i f ( cond. wai t er s>0)  {

V( cond. si gnal ) ;
V( cond. unl ock) ;

}  el se {
V( cond. unl ock) ;

}
}

Building Condition Variables using Semaphores

cond:
semaphor e l ock    = 1
semaphor e si gnal   = 0
i nt wai t er s = 0

But no lost signal
because of
cond.waiters &
counting in
semaphores

Looks like lost-signal situation in
signal-and-wait



Condition Variables Extension

• Wait (cond, mutex)

– Insert(caller, 
cond_queue)

– V(mutex)
– Block this thread

– When unblocked, 
P(mutex)

• Signal (cond)

– Unblock first in 
cond_queue, or just 
return if empty

• Broadcast (cond)

– Unblock all in 
cond_queue, or just 
return if empty

wai t ( cond, mut ex)  {
P( cond. l ock) ;
cond. wai t er s+=1;
V( cond. l ock) ;
V( mut ex) ;
P( cond. si gnal ) ;
P( cond. l ock) ;
cond. wai t er s- =1;
V( cond. l ock) ;
P( mut ex) ;

}

br oadcast ( cond)  {
P( cond. l ock) ;
i f ( cond. wai t er s>0)  {

f or ( i =0; i <cond. wai t er s; i ++)
V( cond. s i gnal ) ;

V( cond. unl ock) ;
}  el se {

V( cond. unl ock) ;
}

}

Building Condition Variables using Semaphores
cond:

semaphor e l ock    = 1
semaphor e si gnal   = 0
i nt wai t er s = 0



Condition Variables Extension II

• Wait (cond, mutex)

– Insert(caller, 
cond_queue)

– V(mutex)
– Block this thread

– When unblocked, 
P(mutex)

• Wait(cond,mutex,timeout)

– Wait no longer than 
timeout

• Signal (cond)

– Unblock first in 
cond_queue, or just 
return if empty

• Broadcast (cond)

– Unblock all in 
cond_queue, or just 
return if empty

This needs additional scheduler support

V( sem)  {
acqui r e( sem. mut ex) ;
sem. val += 1;
i f ( sem. val <= 0)

si gnal ( sem. cond) ;
r el ease( sem. mut ex) ;

}

P( sem)  {
acqui r e( sem. mut ex) ;
sem. val - = 1;
i f ( sem. val < 0)

wai t ( sem. cond, sem. mut ex) ;
r el ease( sem. mut ex) ;

}

Building Semaphores using Condition Variables 
and Mutexes

semaphor e:
mut ex mut ex
cond cond
i nt val = <i ni t i al  sempahor e val ue>



Barriers

• Use of a barrier
– threads approaching a barrier
– all threads but one blocked at barrier
– last thread arrives, all are let through

Threads wait for …

• Access to a critical region
– Mutex
– Semaphore

• A condition to be fulfilled
– Condition variable
– Barrier
– Semaphore


