Description Logic 1: Syntax and Semantics

Leif Harald Karlsen

Autumn 2015
Contents

Introduction

\(\mathcal{ALC}\): Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix
Contents

Introduction

\textit{ALC}: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix
Overview

- *Description logics* are formal languages designed for knowledge representation and reasoning, and most of these are decidable fragments of FOL.
Overview

- Description logics are formal languages designed for knowledge representation and reasoning, and most of these are decidable fragments of FOL.
- Each description logic describes a language, and each language differ in expressibility vs. reasoning complexity, defined by allowing or disallowing different constructs (e.g. conjunction, disjunction, negation, quantifiers, etc.) in their language.
History and motivation

– Description logic comes from a merging of two traditions.
History and motivation

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent ‘knowledge’ in some way
 - ‘Frames,’ like classes, with relations and attributes
 - Try to add some ‘semantics’ in order to do some ‘reasoning’
History and motivation

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent ‘knowledge’ in some way
 - ‘Frames,’ like classes, with relations and attributes
 - Try to add some ‘semantics’ in order to do some ‘reasoning’
- Automated Reasoning, Modal Logic
 - Had theorems and algorithms
History and motivation

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent ‘knowledge’ in some way
 - ‘Frames,’ like classes, with relations and attributes
 - Try to add some ‘semantics’ in order to do some ‘reasoning’
- Automated Reasoning, Modal Logic
 - Had theorems and algorithms
- Cross-fertilisation of applications and theory
History and motivation

- Description logic comes from a merging of two traditions.
- Knowledge Representation (KR)
 - Application oriented
 - Represent ‘knowledge’ in some way
 - ‘Frames,’ like classes, with relations and attributes
 - Try to add some ‘semantics’ in order to do some ‘reasoning’
- Automated Reasoning, Modal Logic
 - Had theorems and algorithms
- Cross-fertilisation of applications and theory
- Today: large impact on Semantic Web (sign up for INF3580/4580!)
Knowledge bases

In description logics one works with three different types of elements:

- individuals/constants (e.g. james, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles/binary relations (e.g. isFatherOf, isConnectedTo)

Knowledge is represented as a knowledge base, $K = \langle A, T \rangle$ where:

- A is a set of assertions about named individuals, called the ABox (e.g. Person(james), isFatherOf(james, peter))
- T is a set of terminology definitions (i.e. complex descriptions of concepts or roles), called the TBox (e.g. Human ⊑ Mammal, Mother ≡ Parent ⊓ Woman)
Knowledge bases

In description logics one works with three different types of elements:

– individuals/constants (e.g. \textit{james}, \textit{sensor1})
Knowledge bases

In description logics one works with three different types of elements:

– individuals/constants (e.g. *james*, *sensor1*)
– concepts/unary relations (e.g. *Person*, *Sensor*)
Knowledge bases

In description logics one works with three different types of elements:

– individuals/constants (e.g. James, sensor1)
– concepts/unary relations (e.g. Person, Sensor)
– roles/binary relations (e.g. isFatherOf, isConnectedTo)
In description logics one works with three different types of elements:

- individuals/constants (e.g. jame, sensor1)
- concepts/unary relations (e.g. Person, Sensor)
- roles-binary relations (e.g. isFatherOf, isConnectedTo)

Knowledge is represented as a knowledge base, $\mathcal{K} = \langle A, T \rangle$ where:

- A is a set of assertions about named individuals, called the ABox (e.g. Person(james), isFatherOf(james, peter))
- T is a set of terminology definitions (i.e. complex descriptions of concepts or roles), called the TBox (e.g. Human \sqsubseteq Mammal, Mother \equiv Parent \sqcap Woman)
Knowledge bases

In description logics one works with three different types of elements:

- individuals/constants (e.g. *james*, *sensor1*)
- concepts/unary relations (e.g. *Person*, *Sensor*)
- roles/binary relations (e.g. *isFatherOf*, *isConnectedTo*)

Knowledge is represented as a knowledge base, $\mathcal{K} = \langle \mathcal{A}, \mathcal{T} \rangle$ where:

- \mathcal{A} is a set of assertions about named individuals, called the ABox (e.g. *Person(james)*, *isFatherOf(james, peter)*)
- \mathcal{T} is a set of terminology definitions (i.e. complex descriptions of concepts or roles), called the TBox (e.g. *Human \sqsubseteq Mammal*, *Mother \equiv Parent \cap Woman*)
Contents

Introduction

\textit{ALC}: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix
\textbf{\textit{ALC}: Syntax}

The description logic \textit{ALC} (Attribute Language with general Complement) allows the following concepts:
\textbf{\textit{ALC}: Syntax}

The description logic \textit{ALC} (Attribute Language with general Complement) allows the following concepts:

\[
\begin{align*}
C, D & \to A & \text{ (atomic concept)} \\
\top & & \text{ (universal concept)} \\
\bot & & \text{ (bottom concept)} \\
\neg C & & \text{ (negation)} \\
C \sqcup D & & \text{ (union)} \\
C \sqcap D & & \text{ (intersection)} \\
\exists R.C & & \text{ (existential restriction)} \\
\forall R.C & & \text{ (universal restriction)}
\end{align*}
\]

where \(A\) is an atomic concept, \(C\) and \(D\) are concepts, and \(R\) is a role.

We allow

- ABox assertions: \(C(a)\) and \(R(a,b)\) for individuals \(a, b\), concepts \(C\) and roles \(R\);
- TBox axioms: \(C \sqsubseteq D\) for concepts \(C\) and \(D\).
ALC: Syntax

The description logic ALC (Attribute Language with general Complement) allows the following concepts:

\[C, D \rightarrow A \quad | \quad \text{(atomic concept)} \]
\[\top \quad | \quad \text{(universal concept)} \]
\[\bot \quad | \quad \text{(bottom concept)} \]
\[\lnot C \quad | \quad \text{(negation)} \]
\[C \sqcup D \quad | \quad \text{(union)} \]
\[C \sqcap D \quad | \quad \text{(intersection)} \]
\[\exists R.C \quad | \quad \text{(existential restriction)} \]
\[\forall R.C \quad | \quad \text{(universal restriction)} \]

where A is an atomic concept, C and D are concepts, and R is a role.
ALC: Syntax

The description logic *ALC* (Attribute Language with general Complement) allows the following concepts:

\[C, D \rightarrow A \] \hspace{1cm} \text{(atomic concept)}
\[\top \] \hspace{1cm} \text{(universal concept)}
\[\bot \] \hspace{1cm} \text{(bottom concept)}
\[\neg C \] \hspace{1cm} \text{(negation)}
\[C \sqcup D \] \hspace{1cm} \text{(union)}
\[C \sqcap D \] \hspace{1cm} \text{(intersection)}
\[\exists R.C \] \hspace{1cm} \text{(existential restriction)}
\[\forall R.C \] \hspace{1cm} \text{(universal restriction)}

where \(A \) is an atomic concept, \(C \) and \(D \) are concepts, and \(R \) is a role. We allow

- ABox assertions: \(C(a) \) and \(R(a, b) \) for individuals \(a, b \), concepts \(C \) and roles \(R \);
- TBox axioms: \(C \sqsubseteq D \) for concepts \(C \) and \(D \).
A model \(\mathcal{M} \) for a knowledge base \(\mathcal{K} \) consists of

– a nonempty set \(\Delta \), and

– an interpretation function \(\cdot^{\mathcal{M}} \), such that:

 – for every constant \(c \), \(c^{\mathcal{M}} \in \Delta \),
 – for every atomic concept \(A \), \(A^{\mathcal{M}} \subseteq \Delta \),
 – for every atomic role \(R \), \(R^{\mathcal{M}} \subseteq \Delta \times \Delta \),
\(\mathcal{ALC} \): Semantics

\(_^\mathcal{M} \) is extended inductively as
\[M \] is extended inductively as

\[\top^M = \Delta \]
\[\bot^M = \emptyset \]
\[(\neg C)^M = \Delta \setminus C^M \]
\[(C \sqcup D)^M = C^M \cup D^M \]
\[(C \sqcap D)^M = C^M \cap D^M \]
\[(\forall R. C)^M = \{ a \in \Delta \mid \forall b \in \Delta \ (\langle a, b \rangle \in R^M \rightarrow b \in C^M) \} \]
\[(\exists R. C)^M = \{ a \in \Delta \mid \exists b \in \Delta \ (\langle a, b \rangle \in R^M \land b \in C^M) \} \]
\mathcal{ALC}: Semantics

An interpretation \mathcal{M} satisfies
- $C(a)$, denoted $\mathcal{M} \models C(a)$, iff $a^\mathcal{M} \in C^\mathcal{M}$;
\textbf{\textit{ALC}: Semantics}

An interpretation \mathcal{M} satisfies

- $C(a)$, denoted $\mathcal{M} \models C(a)$, iff $a^\mathcal{M} \in C^\mathcal{M}$;
- $C \sqsubseteq D$, denoted $\mathcal{M} \models C \sqsubseteq D$, iff $C^\mathcal{M} \subseteq D^\mathcal{M}$;
\textbf{\textsc{ALC}: Semantics}

An interpretation \mathcal{M} satisfies

- $C(a)$, denoted $\mathcal{M} \models C(a)$, iff $a^\mathcal{M} \in C^\mathcal{M}$;
- $C \sqsubseteq D$, denoted $\mathcal{M} \models C \sqsubseteq D$, iff $C^\mathcal{M} \subseteq D^\mathcal{M}$;
- $R \sqsubseteq P$, denoted $\mathcal{M} \models R \sqsubseteq P$, iff $R^\mathcal{M} \subseteq P^\mathcal{M}$.

As usual, we will write $\mathcal{K} \models \psi$ if for any model \mathcal{M} we have that $\mathcal{M} \models \mathcal{K} \Rightarrow \mathcal{M} \models \psi$.
ALC: Semantics

An interpretation \mathcal{M} satisfies

- $C(a)$, denoted $\mathcal{M} \models C(a)$, iff $a^\mathcal{M} \in C^\mathcal{M}$;
- $C \sqsubseteq D$, denoted $\mathcal{M} \models C \sqsubseteq D$, iff $C^\mathcal{M} \subseteq D^\mathcal{M}$;
- $R \sqsubseteq P$, denoted $\mathcal{M} \models R \sqsubseteq P$, iff $R^\mathcal{M} \subseteq P^\mathcal{M}$.

As usual, we will write $\mathcal{K} \models \psi$ if for any model \mathcal{M} we have that $\mathcal{M} \models \mathcal{K} \Rightarrow \mathcal{M} \models \psi$.

We will use the following shorthand notation:

- $C \equiv D$ instead of the two axioms $C \sqsubseteq D$ and $D \sqsubseteq C$;
- $\mathcal{A} \models \psi$ instead of $\langle \emptyset, \mathcal{A} \rangle \models \psi$;
- $\mathcal{T} \models \psi$ instead of $\langle \mathcal{T}, \emptyset \rangle \models \psi$.
Example

TBox:

\[
\begin{align*}
\text{Animal} & \subseteq \text{LivingThing} \\
\text{Donkey} & \equiv \text{Animal} \cap \forall \text{hasParent}. \text{Donkey} \\
\text{Horse} & \equiv \text{Animal} \cap \forall \text{hasParent}. \text{Horse} \\
\text{Mule} & \equiv \text{Animal} \cap \exists \text{hasParent}. \text{Horse} \cap \exists \text{hasParent}. \text{Donkey} \\
\exists \text{hasParent}. \text{Mule} & \subseteq \bot
\end{align*}
\]
Example

TBox:

\[
\begin{align*}
\text{Animal} & \sqsubseteq \text{LivingThing} \\
\text{Donkey} & \equiv \text{Animal} \cap \forall \text{hasParent}.\text{Donkey} \\
\text{Horse} & \equiv \text{Animal} \cap \forall \text{hasParent}.\text{Horse} \\
\text{Mule} & \equiv \text{Animal} \cap \exists \text{hasParent}.\text{Horse} \cap \exists \text{hasParent}.\text{Donkey}
\end{align*}
\]

\[\exists \text{hasParent}.\text{Mule} \sqsubseteq \bot\]

ABox:

\[
\begin{align*}
\text{Horse}(\text{Mary}) & \quad \text{Mule}(\text{Peter}) & \quad \text{Donkey}(\text{Sven}) \\
\text{hasParent}(\text{Peter}, \text{Mary}) & \quad \text{hasParent}(\text{Peter}, \text{Carl})
\end{align*}
\]
Example

TBox:

\[\text{Animal} \sqsubseteq \text{LivingThing} \]
\[\text{Donkey} \equiv \text{Animal} \cap \forall \text{hasParent}. \text{Donkey} \]
\[\text{Horse} \equiv \text{Animal} \cap \forall \text{hasParent}. \text{Horse} \]
\[\text{Mule} \equiv \text{Animal} \cap \exists \text{hasParent}. \text{Horse} \cap \exists \text{hasParent}. \text{Donkey} \]
\[\exists \text{hasParent}. \text{Mule} \sqsubseteq \bot \]

ABox:

\[\text{Horse}(\text{Mary}) \quad \text{Mule}(\text{Peter}) \quad \text{Donkey}(\text{Sven}) \]

\[\text{hasParent}(\text{Peter}, \text{Mary}) \quad \text{hasParent}(\text{Peter}, \text{Carl}) \]
\[\text{hasParent}(\text{Sven}, \text{Hannah}) \quad \text{hasParent}(\text{Sven}, \text{Carl}) \]
Translation to First order logic

The function π map concepts to first-order formulae:

$\pi(x(A)) = A(x)$

$\pi(x(\neg C)) = \neg \pi(x(C))$

$\pi(x(C \sqcup D)) = \pi(x(C)) \lor \pi(x(D))$

$\pi(x(C \sqcap D)) = \pi(x(C)) \land \pi(x(D))$

$\pi(x(\exists R.C)) = \exists y(R(x, y) \land \pi(y(C)))$

$\pi(x(\forall R.C)) = \forall y(R(x, y) \rightarrow \pi(y(C)))$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x(\pi(x(C)) \rightarrow \pi(x(D)))$.

Theorem $a \in I$ iff $I|_{\pi(C[\alpha/x])}$, and $I \models C \sqsubseteq D$ iff $I|_{\Pi(C \sqsubseteq D)}$.

E.g.:

$\pi(x(Animal \sqcap \forall hasParent.Donkey)) = Animal(x) \land \forall y(hasParent(x, y) \rightarrow Donkey(y))$

$\Pi(Animal \sqsubseteq LivingThing) = \forall x(Animal(x) \rightarrow LivingThing(x))$
Translation to First order logic

The function \(\pi \) map concepts to first-order formulae:

\[
\begin{align*}
\pi_x(A) &= A(x) \\
\pi_x(\neg C) &= \neg \pi_x(C) \\
\pi_x(C \sqcup D) &= \pi_x(C) \lor \pi_x(D) \\
\pi_x(C \sqcap D) &= \pi_x(C) \land \pi_x(D) \\
\pi_x(\exists R. C) &= \exists y \ (R(x, y) \land \pi_y(C)) \\
\pi_x(\forall R. C) &= \forall y \ (R(x, y) \rightarrow \pi_y(C))
\end{align*}
\]
Translation to First order logic

The function π map concepts to first-order formulae:

$$\pi_x(A) = A(x)$$
$$\pi_x(\neg C) = \neg \pi_x(C)$$
$$\pi_x(C \sqcup D) = \pi_x(C) \lor \pi_x(D)$$
$$\pi_x(C \sqcap D) = \pi_x(C) \land \pi_x(D)$$
$$\pi_x(\exists R. C) = \exists y \, (R(x, y) \land \pi_y(C))$$
$$\pi_x(\forall R. C) = \forall y \, (R(x, y) \rightarrow \pi_y(C))$$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x (\pi_x(C) \rightarrow \pi_x(D))$.
Translation to First order logic

The function π map concepts to first-order formulae:

$$
\pi_x(A) = A(x)
$$

$$
\pi_x(\neg C) = \neg \pi_x(C)
$$

$$
\pi_x(C \sqcup D) = \pi_x(C) \lor \pi_x(D)
$$

$$
\pi_x(C \sqcap D) = \pi_x(C) \land \pi_x(D)
$$

$$
\pi_x(\exists R.C) = \exists y (R(x, y) \land \pi_y(C))
$$

$$
\pi_x(\forall R.C) = \forall y (R(x, y) \rightarrow \pi_y(C))
$$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \rightarrow \pi_x(D))$.

Theorem

$a^\mathcal{I} \in C^\mathcal{I}$ iff $\mathcal{I} \models_{FOL} \pi_x(C)[a/x]$, and $\mathcal{I} \models C \sqsubseteq D$ iff $\mathcal{I} \models_{FOL} \Pi(C \sqsubseteq D)$.
Translation to First order logic

The function π map concepts to first-order formulae:

$$\pi_x(A) = A(x)$$
$$\pi_x(\neg C) = \neg \pi_x(C)$$
$$\pi_x(C \sqcup D) = \pi_x(C) \lor \pi_x(D)$$
$$\pi_x(C \sqcap D) = \pi_x(C) \land \pi_x(D)$$
$$\pi_x(\exists R.C) = \exists y \, (R(x, y) \land \pi_y(C))$$
$$\pi_x(\forall R.C) = \forall y \, (R(x, y) \rightarrow \pi_y(C))$$

We can then map axioms: $\Pi(C \sqsubseteq D) := \forall x(\pi_x(C) \rightarrow \pi_x(D))$.

Theorem

$a^\mathcal{I} \in C^\mathcal{I}$ iff $\mathcal{I} \models_{\text{FOL}} \pi_x(C)[a/x]$, and $\mathcal{I} \models C \sqsubseteq D$ iff $\mathcal{I} \models_{\text{FOL}} \Pi(C \sqsubseteq D)$.

E.g.:

$$\pi_x(\text{Animal} \sqcap \forall \text{hasParent} . \text{Donkey}) = \text{Animal}(x) \land \forall y \, (\text{hasParent}(x, y) \rightarrow \text{Donkey}(y))$$

$$\Pi(\text{Animal} \sqsubseteq \text{LivingThing}) = \forall x(\text{Animal}(x) \rightarrow \text{LivingThing}(x))$$
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:

- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\} \rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \vDash C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \vDash C \equiv D$);
- Given two concepts C and D, are C and D disjoint ($\mathcal{T} \vDash C \sqcap D \sqsubseteq \bot$);

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, A \rangle$:

- Is \mathcal{K} consistent (\mathcal{K} has a model);
- Given a concept C and an individual a, does \mathcal{K} entail $C(a)$ ($\mathcal{K} \vDash C(a)$);
- Given a concept C, find all individuals a such that \mathcal{K} entails $C(a)$.
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:
- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\} \rangle$ has a model);
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:

- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\} \rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \models C \equiv D$);
- Given two concepts C and D, are C and D disjoint ($\mathcal{T} \models C \sqcap D \sqsubseteq \bot$).
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:

- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\} \rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \vdash C \subseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \vdash C \equiv D$);
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:

- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\}\rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \models C \equiv D$);
- Given two concepts C and D, are C and D disjoint ($\mathcal{T} \models C \cap D \sqsubseteq \bot$);
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:
- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\} \rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \models C \sqsubseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \models C \equiv D$);
- Given two concepts C and D, are C and D disjoint ($\mathcal{T} \models C \cap D \sqsubseteq \bot$);

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:

- Is \mathcal{K} consistent (\mathcal{K} has a model);
- Given a concept C and an individual a, does \mathcal{K} entail $C(a)$ ($\mathcal{K} \models C(a)$);
- Given a concept C, find all individuals a such that \mathcal{K} entails $C(a)$.
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:

– Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{ C(x_0) \} \rangle$ has a model);
– Given two concepts C and D, is C subsumed by D ($\mathcal{T} \vDash C \subseteq D$);
– Given two concepts C and D, are C and D equivalent ($\mathcal{T} \vDash C \equiv D$);
– Given two concepts C and D, are C and D disjoint ($\mathcal{T} \vDash C \cap D \subseteq \bot$);

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:

– Is \mathcal{K} consistent (\mathcal{K} has a model);
Reasoning problems

The following problems are of interest with respect to a TBox \mathcal{T}:
- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\}\rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \models C \subseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \models C \equiv D$);
- Given two concepts C and D, are C and D disjoint ($\mathcal{T} \models C \cap D \subseteq \bot$);

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$:
- Is \mathcal{K} consistent (\mathcal{K} has a model);
- Given a concept C and an individual a, does \mathcal{K} entail $C(a)$ ($\mathcal{K} \models C(a)$);
The following problems are of interest with respect to a TBox \mathcal{T}:

- Given a concept C, is C satisfiable ($\langle \mathcal{T}, \{C(x_0)\}\rangle$ has a model);
- Given two concepts C and D, is C subsumed by D ($\mathcal{T} \models C \subseteq D$);
- Given two concepts C and D, are C and D equivalent ($\mathcal{T} \models C \equiv D$);
- Given two concepts C and D, are C and D disjoint ($\mathcal{T} \models C \cap D \sqsubseteq \bot$);

The following problems are of interest with respect to knowledge bases $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}\rangle$:

- Is \mathcal{K} consistent (\mathcal{K} has a model);
- Given a concept C and an individual a, does \mathcal{K} entail $C(a)$ ($\mathcal{K} \models C(a)$);
- Given a concept C, find all individuals a such that \mathcal{K} entails $C(a)$.

Reasoning problems
Contents

Introduction

\mathcal{ALC}: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix
Naming conventions

– As we have seen \mathcal{ALC} is the Attribute Language with general Complement.
Naming conventions

- As we have seen \mathcal{ALC} is the *Attribute Language with general Complement*.
- The C actually denotes an extension of a more restrictive language \mathcal{AL}.

...
Naming conventions

- As we have seen \mathcal{ALC} is the \textit{Attribute Language with general Complement}.
- The \mathcal{C} actually denotes an extension of a more restrictive language \mathcal{AL}.
- In a similar way, we have the following possible extensions of our logic:
Naming conventions

- As we have seen, \mathcal{ALC} is the *Attribute Language with general Complement*.
- The C actually denotes an extension of a more restrictive language \mathcal{AL}.
- In a similar way, we have the following possible extensions of our logic:
 - \mathcal{H}: Role hierarchies;
 - \mathcal{R}: Complex role hierarchies;
 - \mathcal{N}: Cardinality restrictions;
 - \mathcal{Q}: Qualified cardinality restrictions;
 - \mathcal{O}: Closed classes;
 - \mathcal{I}: Inverse roles;
 - \mathcal{D}: Datatypes;
 - ...
Naming conventions

- As we have seen \mathcal{ALC} is the *Attribute Language with general Complement*.
- The \mathcal{C} actually denotes an extension of a more restrictive language \mathcal{AL}.
- In a similar way, we have the following possible extensions of our logic:
 - \mathcal{H}: Role hierarchies;
 - \mathcal{R}: Complex role hierarchies;
 - \mathcal{N}: Cardinality restrictions;
 - \mathcal{Q}: Qualified cardinality restrictions;
 - \mathcal{O}: Closed classes;
 - \mathcal{I}: Inverse roles;
 - \mathcal{D}: Datatypes;
 - ...

- We name the languages by adding the letters of the features to \mathcal{ALC}. So e.g. \mathcal{ALCN} is \mathcal{ALC} extended with cardinality restrictions and \mathcal{ALCHI} is \mathcal{ALC} extended with role hierarchies and inverse roles.
Naming conventions

- As we have seen \mathcal{ALC} is the *Attribute Language with general Complement*.
- The \mathcal{C} actually denotes an extension of a more restrictive language \mathcal{AL}.
- In a similar way, we have the following possible extensions of our logic:
 - \mathcal{H}: Role hierarchies;
 - \mathcal{R}: Complex role hierarchies;
 - \mathcal{N}: Cardinality restrictions;
 - \mathcal{Q}: Qualified cardinality restrictions;
 - \mathcal{O}: Closed classes;
 - \mathcal{I}: Inverse roles;
 - \mathcal{D}: Datatypes;
 - ...

- We name the languages by adding the letters of the features to \mathcal{ALC}. So e.g. \mathcal{ALCN} is \mathcal{ALC} extended with cardinality restrictions and \mathcal{ALCHI} is \mathcal{ALC} extended with role hierarchies and inverse roles.
- It is common to shorten \mathcal{ALC} (extended with transitive roles) to just \mathcal{S} for more advanced languages, so e.g. \mathcal{SHOIN} is $\mathcal{ALC} + \mathcal{H} + \mathcal{O} + \mathcal{I} + \mathcal{N}$.
Normal extensions

- \(H \) – Role Hierarchies: We allow TBox axioms on the form \(R \sqsubseteq P \) for atomic roles.

 Semantics:

 \[M \models R \sqsubseteq P \iff R^M \subseteq P^M \]

 e.g. \(\text{hasFather} \sqsubseteq \text{hasParent} \);
Normal extensions

- \(\mathcal{H} \) – Role Hierarchies: We allow TBox axioms on the form \(R \sqsubseteq P \) for atomic roles.
 Semantics:
 \[\mathcal{M} \models R \sqsubseteq P \iff R^\mathcal{M} \subseteq P^\mathcal{M} \]
 e.g. \(\text{hasFather} \sqsubseteq \text{hasParent} \);

- \(\mathcal{R} \) – Complex role hierarchies: We allow roles on the form \(R \circ P \) and TBox axioms on the form \(R \circ P \sqsubseteq P \) and \(R \circ P \sqsubseteq R \) for any two roles.
 Semantics:
 \[(R \circ P)^\mathcal{M} := \{ \langle a, b \rangle \in \Delta^\mathcal{M} \times \Delta^\mathcal{M} \mid \exists c \in \Delta^\mathcal{M} (\langle a, c \rangle \in R^\mathcal{M} \land \langle c, b \rangle \in P^\mathcal{M}) \} \]
 and
 \[\mathcal{M} \models R \sqsubseteq P \iff R^\mathcal{M} \subseteq P^\mathcal{M} \]
 e.g. \(\text{friendOf} \circ \text{enemyOf} \sqsubseteq \text{enemyOf} \).
Normal extensions

– \mathcal{N} – Cardinality restrictions: We allow concepts on the form $\leq n R$ and $\geq n R$ for any natural number n. Semantics1:

$$(\leq n R)^M := \{a \in \Delta^M | \#\{b \in \Delta^M | \langle a, b \rangle \in R^M \} \leq n\}$$

$$(\geq n R)^M := \{a \in \Delta^M | \#\{b \in \Delta^M | \langle a, b \rangle \in R^M \} \geq n\}$$

e.g. $Mammal \sqsubseteq \leq 2 \text{ hasParent}$;

1We let $\#S$ be the cardinality of the set S
Normal extensions

- \mathcal{N} – Cardinality restrictions: We allow concepts on the form $\leq n \cdot R$ and $\geq n \cdot R$ for any natural number n. Semantics1:

\[
(\leq n \cdot R)^M := \{ a \in \Delta^M \mid \# \{ b \in \Delta^M \mid \langle a, b \rangle \in R^M \} \leq n \}\\
(\geq n \cdot R)^M := \{ a \in \Delta^M \mid \# \{ b \in \Delta^M \mid \langle a, b \rangle \in R^M \} \geq n \}
\]

 e.g. $\text{Mammal} \sqsubseteq \leq 2 \cdot \text{hasParent}$;

- Q – Qualified cardinality restrictions: We allow concepts on the form $\leq n \cdot R.C$ and $\geq n \cdot R.C$ for any natural number n. Semantics:

\[
(\leq n \cdot R.C)^M := \{ a \in \Delta^M \mid \# \{ b \in \Delta^M \mid \langle a, b \rangle \in R^M \land b \in C^M \} \leq n \}\\
(\geq n \cdot R.C)^M := \{ a \in \Delta^M \mid \# \{ b \in \Delta^M \mid \langle a, b \rangle \in R^M \land b \in C^M \} \geq n \}
\]

 e.g. $\text{RichPeople} \sqsubseteq \geq 2 \cdot \text{owns.House}$.

1We let $\# S$ be the cardinality of the set S.
Normal extensions

– \mathcal{O} – Closed classes: We allow concepts on the form $\{a_1, a_2, \ldots, a_n\}$ where a_i are individuals. Semantics

\[
\left(\{a_1, a_2, \ldots, a_n\}\right)^M := \{a_1^M, a_2^M, \ldots, a_n^M\}
\]

e.g. $\text{Days} \sqsubseteq \{\text{monday}, \text{tuesday}, \text{wednesday}, \text{thursday}, \text{friday}, \text{saturday}, \text{sunday}\}$;
Normal extensions

- \(\mathcal{O} \) – Closed classes: We allow concepts on the form \(\{a_1, a_2, \ldots, a_n\} \) where \(a_i \) are individuals. Semantics

\[
(\{a_1, a_2, \ldots, a_n\})^M := \{a_1^M, a_2^M, \ldots, a_n^M\}
\]

e.g. \(\text{Days} \sqsubseteq \{\text{monday, tuesday, wednesday, thursday, friday, saturday, sunday}\} \);

- \(\mathcal{I} \) – Inverse roles: We allow roles on the form \(R^- \). Semantics:

\[
(R^-)^M := \{\langle a, b \rangle \in \Delta^M \times \Delta^M | \langle b, a \rangle \in R^M\}
\]

e.g. \(\text{hasParent}^- \sqsubseteq \text{isChildOf} \);
Normal extensions

- \(\mathcal{O} \) – Closed classes: We allow concepts on the form \(\{a_1, a_2, \ldots, a_n\} \) where \(a_i \) are individuals. Semantics

\[
(\{a_1, a_2, \ldots, a_n\})^M := \{a_1^M, a_2^M, \ldots, a_n^M\}
\]

E.g. \(\text{Days} \sqsubseteq \{\text{monday, tuesday, wednesday, thursday, friday, saturday, sunday}\} \);

- \(\mathcal{I} \) – Inverse roles: We allow roles on the form \(R^- \). Semantics:

\[
(R^-)^M := \{\langle a, b \rangle \in \Delta^M \times \Delta^M \mid \langle b, a \rangle \in R^M\}
\]

E.g. \(\text{hasParent}^- \sqsubseteq \text{isChildOf} \);

- \(\mathcal{D} \) - Datatypes: We introduce a set of datatypes: \text{int, string, float, boolean}, and so on. They all have a fixed interpretation, that is, the same for all models.
Examples

\[\text{OnlyChild} \sqsubseteq \text{Person} \land \neg \exists \text{hasSibling}. \top\]
Examples

\begin{align*}
\text{OnlyChild} & \subseteq \text{Person} \cap \neg \exists \text{hasSibling}. \top \\
\text{Animal} & \subseteq \leq 2 \text{hasParent}. \text{Animal} \cap \geq 2 \text{hasParent}. \text{Animal}
\end{align*}
Examples

\[
\begin{align*}
 \text{OnlyChild} & \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}. \top \\
 \text{Animal} & \sqsubseteq \leq 2 \text{hasParent}. \text{Animal} \sqcap \geq 2 \text{hasParent}. \text{Animal} \\
 \text{Pet} \sqcap \text{Person} & \sqsubseteq \bot
\end{align*}
\]
Examples

\[
\begin{align*}
\text{OnlyChild} & \subseteq \text{Person} \cap \neg \exists \text{hasSibling}. \top \\
\text{Animal} & \subseteq \leq 2 \text{hasParent}. \text{Animal} \cap \geq 2 \text{hasParent}. \text{Animal} \\
\text{Pet} \cap \text{Person} & \subseteq \bot \\
\text{Person} & \subseteq \exists \text{loves}. \{\text{mary}\} \\
\end{align*}
\]
Examples

\[\text{OnlyChild} \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}.\top \]
\[\text{Animal} \sqsubseteq \leq 2 \text{hasParent}.\text{Animal} \sqcap \geq 2 \text{hasParent}.\text{Animal} \]
\[\text{Pet} \sqcap \text{Person} \sqsubseteq \bot \]
\[\text{Person} \sqsubseteq \exists \text{loves}.\{\text{mary}\} \]
\[\text{Norwegian} \sqsubseteq \exists \text{comesFrom}.\{\text{norway}\} \]
Examples

\[\text{OnlyChild} \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}. \top \]
\[\text{Animal} \sqsubseteq \leq 2 \text{hasParent}. \text{Animal} \sqcap \geq 2 \text{hasParent}. \text{Animal} \]
\[\text{Pet} \sqcap \text{Person} \sqsubseteq \bot \]
\[\text{Person} \sqsubseteq \exists \text{loves}. \{\text{mary}\} \]
\[\text{Norwegian} \sqsubseteq \exists \text{comesFrom}. \{\text{norway}\} \]
\[\{\text{adam}\} \sqsubseteq \neg \{\text{eve}\} \]
Examples

\[
\begin{align*}
OnlyChild & \subseteq Person \cap \neg \exists \text{hasSibling}. \top \\
Animal & \subseteq \leq 2 \text{hasParent}. \text{Animal} \cap \geq 2 \text{hasParent}. \text{Animal} \\
Pet \cap Person & \subseteq \bot \\
Person & \subseteq \exists \text{loves.\{mary\}} \\
Norwegian & \subseteq \exists \text{comesFrom.\{norway\}} \\
\{adam\} & \subseteq \neg \{eve\} \\
\text{hasFather} \circ \text{hasBrother} & \subseteq \text{hasUncle}
\end{align*}
\]
Examples

\[
\begin{align*}
\text{OnlyChild} & \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}.\top \\
\text{Animal} & \sqsubseteq \leq 2 \text{hasParent}.\text{Animal} \sqcap \geq 2 \text{hasParent}.\text{Animal} \\
\text{Pet} \sqcap \text{Person} & \sqsubseteq \bot \\
\text{Person} & \sqsubseteq \exists \text{loves}.\{\text{mary}\} \\
\text{Norwegian} & \sqsubseteq \exists \text{comesFrom}.\{\text{norway}\} \\
\{\text{adam}\} & \sqsubseteq \neg \{\text{eve}\} \\
\text{hasFather} \circ \text{hasBrother} & \sqsubseteq \text{hasUncle} \\
\exists R.\top & \sqsubseteq C
\end{align*}
\]
Examples

\[
\begin{align*}
\text{OnlyChild} & \subseteq \text{Person} \sqcap \neg \exists \text{hasSibling}. \top \\
\text{Animal} & \subseteq \leq 2 \text{hasParent}. \text{Animal} \sqcap \geq 2 \text{hasParent}. \text{Animal} \\
\text{Pet} \sqcap \text{Person} & \subseteq \bot \\
\text{Person} & \subseteq \exists \text{loves}. \{\text{mary}\} \\
\text{Norwegian} & \subseteq \exists \text{comesFrom}. \{\text{norway}\} \\
\{\text{adam}\} & \subseteq \neg \{\text{eve}\} \\
\text{hasFather} \circ \text{hasBrother} & \subseteq \text{hasUncle} \\
\exists R. \top & \subseteq C \\
\end{align*}
\]
Examples

<table>
<thead>
<tr>
<th>Class</th>
<th>Inclusion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnlyChild</td>
<td>⊑ Person ¬∃ hasSibling. ⊤</td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>⊑ ≤ 2 hasParent. Animal ⊓ ≥ 2 hasParent. Animal</td>
<td></td>
</tr>
<tr>
<td>Pet ⊓ Person</td>
<td>⊑ ⊥</td>
<td></td>
</tr>
<tr>
<td>Person</td>
<td>⊑ ∃ loves. {mary}</td>
<td></td>
</tr>
<tr>
<td>Norwegian</td>
<td>⊑ ∃ comesFrom. {norway}</td>
<td></td>
</tr>
<tr>
<td>{adam}</td>
<td>⊑ ¬ {eve}</td>
<td></td>
</tr>
<tr>
<td>hasFather ◦ hasBrother</td>
<td>⊑ hasUncle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation</th>
<th>Inclusion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃ R. ⊤</td>
<td>⊑ C</td>
<td>Domain</td>
</tr>
<tr>
<td>⊤</td>
<td>⊑ ∀ R. C</td>
<td></td>
</tr>
</tbody>
</table>
Examples

\[\text{OnlyChild} \sqsubseteq \text{Person \land \neg \exists \text{hasSibling}.\top}\]
\[\text{Animal} \sqsubseteq \leq 2 \text{hasParent}.\text{Animal} \sqcap \geq 2 \text{hasParent}.\text{Animal}\]
\[\text{Pet} \sqcap \text{Person} \sqsubseteq \bot\]
\[\text{Person} \sqsubseteq \exists \text{loves}.\{\text{mary}\}\]
\[\text{Norwegian} \sqsubseteq \exists \text{comesFrom}.\{\text{norway}\}\]
\[\{\text{adam}\} \sqsubseteq \neg \{\text{eve}\}\]
\[\text{hasFather} \circ \text{hasBrother} \sqsubseteq \text{hasUncle}\]

\[\exists R.\top \sqsubseteq C\]
\[\top \sqsubseteq \forall R.\ C\]

Domain

Range
Examples

\[
\begin{align*}
\text{OnlyChild} & \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}. \top \\
\text{Animal} & \sqsubseteq \leq 2 \text{hasParent. Animal} \sqcap \geq 2 \text{hasParent. Animal} \\
\text{Pet} \sqcap \text{Person} & \sqsubseteq \bot \\
\text{Person} & \sqsubseteq \exists \text{loves.} \{\text{mary}\} \\
\text{Norwegian} & \sqsubseteq \exists \text{comesFrom.} \{\text{norway}\} \\
\{\text{adam}\} & \sqsubseteq \neg \{\text{eve}\} \\
\text{hasFather} \circ \text{hasBrother} & \sqsubseteq \text{hasUncle} \\
\exists R. \top & \sqsubseteq C \\
\top & \sqsubseteq \forall R. C \\
R \circ R & \sqsubseteq R
\end{align*}
\]
Examples

\[\text{OnlyChild} \subseteq \text{Person} \sqcap \lnot \exists \text{hasSibling}. \top \]
\[\text{Animal} \subseteq \leq 2 \text{hasParent}. \text{Animal} \sqcap \geq 2 \text{hasParent}. \text{Animal} \]
\[\text{Pet} \sqcap \text{Person} \subseteq \bot \]
\[\text{Person} \subseteq \exists \text{loves}. \{ \text{mary} \} \]
\[\text{Norwegian} \subseteq \exists \text{comesFrom}. \{ \text{norway} \} \]
\[\{ \text{adam} \} \subseteq \lnot \{ \text{eve} \} \]
\[\text{hasFather} \circ \text{hasBrother} \subseteq \text{hasUncle} \]

\[\exists R. \top \subseteq C \]
\[\top \subseteq \forall R. C \]
\[R \circ R \subseteq R \]

Domain
Range
Transitivity
Examples

\[\text{OnlyChild} \subseteq \text{Person} \land \neg \exists \text{hasSibling}.\top \]
\[\text{Animal} \subseteq \leq 2 \text{hasParent}.\text{Animal} \land \geq 2 \text{hasParent}.\text{Animal} \]
\[\text{Pet} \land \text{Person} \subseteq \bot \]
\[\text{Person} \subseteq \exists \text{loves}.\{\text{mary}\} \]
\[\text{Norwegian} \subseteq \exists \text{comesFrom}.\{\text{norway}\} \]
\[\{\text{adam}\} \subseteq \neg \{\text{eve}\} \]
\[\text{hasFather} \circ \text{hasBrother} \subseteq \text{hasUncle} \]

\[\exists R.\top \subseteq C \quad \text{Domain} \]
\[\top \subseteq \forall R. C \quad \text{Range} \]
\[R \circ R \subseteq R \quad \text{Transitivity} \]
\[\top \subseteq \leq 1 R.\top \]
Examples

\begin{align*}
\text{OnlyChild} & \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}. \top \\
\text{Animal} & \sqsubseteq \leq 2 \text{hasParent.} \text{Animal} \sqcap \geq 2 \text{hasParent.} \text{Animal} \\
\text{Pet} \sqcap \text{Person} & \sqsubseteq \bot \\
\text{Person} & \sqsubseteq \exists \text{loves.} \{\text{mary}\} \\
\text{Norwegian} & \sqsubseteq \exists \text{comesFrom.} \{\text{norway}\} \\
\{\text{adam}\} & \sqsubseteq \neg \{\text{eve}\} \\
\text{hasFather} \circ \text{hasBrother} & \sqsubseteq \text{hasUncle} \\
\exists R. \top & \sqsubseteq C & \text{Domain} \\
\top & \sqsubseteq \forall R. C & \text{Range} \\
R \circ R & \sqsubseteq R & \text{Transitivity} \\
\top & \sqsubseteq \leq 1 R. \top & \text{Functionality}
\end{align*}
Examples

\(\text{OnlyChild} \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}.\top\)
\(\text{Animal} \sqsubseteq \leq 2 \text{hasParent}.\text{Animal} \sqcap \geq 2 \text{hasParent}.\text{Animal}\)
\(\text{Pet} \sqcap \text{Person} \sqsubseteq \bot\)
\(\text{Person} \sqsubseteq \exists \text{loves}.\{\text{mary}\}\)
\(\text{Norwegian} \sqsubseteq \exists \text{comesFrom}.\{\text{norway}\}\)
\(\{\text{adam}\} \sqsubseteq \neg \{\text{eve}\}\)
\(\text{hasFather} \circ \text{hasBrother} \sqsubseteq \text{hasUncle}\)

\(\exists R. \top \sqsubseteq C\)
\(\top \sqsubseteq \forall R.C\)
\(R \circ R \sqsubseteq R\)
\(\top \sqsubseteq \leq 1 R. \top\)
\(R \sqsubseteq R^-\)

Domain
Range
Transitivity
Functionality
Examples

\[
\begin{align*}
\text{OnlyChild} \subseteq & \text{Person} \cap \neg \exists \text{hasSibling}. \top \\
\text{Animal} \subseteq & \leq 2 \text{hasParent}. \text{Animal} \cap \geq 2 \text{hasParent}. \text{Animal} \\
\text{Pet} \cap \text{Person} \subseteq & \bot \\
\text{Person} \subseteq & \exists \text{loves}. \{\text{mary}\} \\
\text{Norwegian} \subseteq & \exists \text{comesFrom}. \{\text{norway}\} \\
\{\text{adam}\} \subseteq & \neg \{\text{eve}\} \\
\text{hasFather} \circ \text{hasBrother} \subseteq & \text{hasUncle}
\end{align*}
\]

\[
\begin{align*}
\exists R. \top \subseteq & C \quad \text{Domain} \\
\top \subseteq & \forall R. C \\
R \circ R \subseteq & R \quad \text{Transitivity} \\
\top \subseteq & \leq 1 R. \top \\
R \subseteq & R^- \quad \text{Functionality} \\
\end{align*}
\]
Examples

\[
\text{OnlyChild} \subseteq \text{Person} \land \neg \exists \text{hasSibling} \cdot \top
\]

\[
\text{Animal} \subseteq \leq 2 \text{hasParent} \cdot \text{Animal} \land \geq 2 \text{hasParent} \cdot \text{Animal}
\]

\[
\text{Pet} \cap \text{Person} \subseteq \bot
\]

\[
\exists \text{loves} \cdot \{\text{mary}\}
\]

\[
\text{Norwegian} \subseteq \exists \text{comesFrom} \cdot \{\text{norway}\}
\]

\[
\{\text{adam}\} \subseteq \neg \{\text{eve}\}
\]

\[
\text{hasFather} \circ \text{hasBrother} \subseteq \text{hasUncle}
\]

\[
\exists R \cdot \top \subseteq C \quad \text{Domain}
\]

\[
\top \subseteq \forall R \cdot C \quad \text{Range}
\]

\[
R \circ R \subseteq R \quad \text{Transitivity}
\]

\[
\top \subseteq \leq 1 R \cdot \top \quad \text{Functionality}
\]

\[
R \subseteq R^\sim \quad \text{Symmetry}
\]

\[
R \subseteq \neg R^\sim
\]
Examples

\[
\begin{align*}
\text{OnlyChild} & \sqsubseteq \text{Person} \sqcap \neg \exists \text{hasSibling}. \top \\
\text{Animal} & \sqsubseteq \leq 2 \text{hasParent}. \text{Animal} \sqcap \geq 2 \text{hasParent}. \text{Animal} \\
\text{Pet} \sqcap \text{Person} & \sqsubseteq \bot \\
\text{Person} & \sqsubseteq \exists \text{loves}. \{\text{mary}\} \\
\text{Norwegian} & \sqsubseteq \exists \text{comesFrom}. \{\text{norway}\} \\
\{\text{adam}\} & \sqsubseteq \neg \{\text{eve}\} \\
\text{hasFather} \circ \text{hasBrother} & \sqsubseteq \text{hasUncle}
\end{align*}
\]

\[
\begin{align*}
\exists R. \top & \sqsubseteq C & \text{Domain} \\
\top & \sqsubseteq \forall R. C & \text{Range} \\
R \circ R & \sqsubseteq R & \text{Transitivity} \\
\top & \sqsubseteq \leq 1 R. \top & \text{Functionality} \\
R & \sqsubseteq R^\sim & \text{Symmetry} \\
R & \sqsubseteq \neg R^\sim & \text{Asymmetry}
\end{align*}
\]
Complexity results

http://www.cs.man.ac.uk/~ezolin/dl/
Common restricted languages: \mathcal{EL}

The description logic \mathcal{EL} allow the following concepts:
Common restricted languages: \mathcal{EL}

The description logic \mathcal{EL} allow the following concepts:

- $C, D \rightarrow A$ (atomic concept)
- \top (universal concept)
- \bot (bottom concept)
- $\{a\}$ (singular enumeration)
- $C \sqcap D$ (intersection)
- $\exists R.C$ (existential restriction)

with the following axioms:

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- $P \sqsubseteq Q$ and $P \equiv Q$ for roles P, Q.
- $C(a)$ and $R(a, b)$ for concept C, role R and individuals a, b.
Common restricted languages: \mathcal{EL}

The description logic \mathcal{EL} allow the following concepts:

\[
\begin{align*}
C, D \rightarrow & \quad A & \text{(atomic concept)} \\
\top & \quad \text{(universal concept)} \\
\bot & \quad \text{(bottom concept)} \\
\{a\} & \quad \text{(singular enumeration)} \\
C \sqcap D & \quad \text{(intersection)} \\
\exists R.C & \quad \text{(existential restriction)}
\end{align*}
\]

with the following axioms:

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- $P \sqsubseteq Q$ and $P \equiv Q$ for roles P, Q.
- $C(a)$ and $R(a, b)$ for concept C, role R and individuals a, b.
Common restricted languages: \(\mathcal{EL} \)

Not supported (excerpt):
- negation, (only disjointness of classes: \(C \cap D \sqsubseteq \bot \)),
- disjunction,
- universal quantification,
- cardinalities,
- inverse roles,
- plus some role characteristics.
Common restricted languages: \mathcal{EL}

Not supported (excerpt):
- negation, (only disjointness of classes: $C \cap D \sqsubseteq \bot$),
- disjunction,
- universal quantification,
- cardinalities,
- inverse roles,
- plus some role characteristics.

- Captures language used for many large ontologies.
- Checking ontology consistency, class expression subsumption, and instance checking is in \mathbf{P}.
- “Good for large ontologies.”
Common restricted languages: *DL-Lite*

The description logic *DL-Lite*$_R$ allows the following concepts:
Common restricted languages: *DL-Lite*

The description logic *DL-Lite*\(_R\) allows the following concepts:

\[
\begin{align*}
C & \rightarrow \ A & \text{ (atomic concept)} \\
 & \quad \exists R. \top & \text{ (existential restriction with } \top \text{ only)}
\end{align*}
\]

\[
\begin{align*}
D & \rightarrow \ A & \text{ (atomic concept)} \\
 & \quad \exists R.D & \text{ (existential restriction)} \\
 & \quad \neg D & \text{ (negation)} \\
 & \quad D \sqcap D' & \text{ (intersection)}
\end{align*}
\]
Common restricted languages: *DL-Lite*

The description logic $DL-Lite_R$ allows the following concepts:

\[
\begin{align*}
C & \rightarrow A & \text{(atomic concept)} \\
\exists R. \top & \text{ (existential restriction with } \top \text{ only)} \\
D & \rightarrow A & \text{(atomic concept)} \\
\exists R. D & \text{ (existential restriction)} \\
\neg D & \text{ (negation)} \\
D \cap D' & \text{ (intersection)}
\end{align*}
\]

with the following axioms:

\begin{itemize}
 \item $C \sqsubseteq D$ for concept descriptions D and C (and $C \equiv C'$).
 \item $P \sqsubseteq Q$ and $P \equiv Q$ for roles P, Q.
 \item $C(a)$ and $R(a, b)$ for concept C, role R and individuals a, b.
\end{itemize}
Common restricted languages: *DL-Lite*

Not supported (excerpt):
- disjunction,
- universal quantification,
- cardinalities,
- functional roles, keys,
- enumerations (closed classes),
- subproperties of chains, transitivity
Common restricted languages: *DL-Lite*

Not supported (excerpt):
- disjunction,
- universal quantification,
- cardinalities,
- functional roles, keys,
- enumerations (closed classes),
- subproperties of chains, transitivity

- Captures language for which queries can be translated to SQL.
 - Conjunctive queries over a *DL-Lite* knowledge base can be expanded with the TBox to a conjunctive query that can be answered over the Abox alone. This is called *first order rewritability*.
- “Good for large datasets.”
Common restricted languages: \mathcal{RL}

The description logic \mathcal{RL} (also called DLP) allow the following concepts:
Common restricted languages: \mathcal{RL}

The description logic \mathcal{RL} (also called DLP) allow the following concepts:

$$
\begin{align*}
C \to & A & \text{(atomic concept)} \\
C \sqcap C' & \text{(intersection)} \\
C \sqcup C' & \text{(union)} \\
\exists R.C & \text{(existential restriction)} \\
D \to & A & \text{(atomic concept)} \\
D \sqcap D' & \text{(intersection)} \\
\forall R.D & \text{(universal restriction)}
\end{align*}
$$
Common restricted languages: \mathcal{RL}

The description logic \mathcal{RL} (also called DLP) allow the following concepts:

$C \rightarrow A$ \quad (atomic concept)
$C \cap C'$ \quad (intersection)
$C \cup C'$ \quad (union)
$\exists R.C$ \quad (existential restriction)

$D \rightarrow A$ \quad (atomic concept)
$D \cap D'$ \quad (intersection)
$\forall R.D$ \quad (universal restriction)

with the following axioms:

- $C \sqsubseteq D$, $C \equiv C'$, $\top \sqsubseteq \forall P.D$, $\top \sqsubseteq \forall P^- . D$ $P \sqsubseteq Q$, $P \equiv Q^{-}$ and $P \equiv Q$ for roles P, Q and concept descriptions D and C.
- $C(a)$ and $R(a, b)$ for concept C, role R and individuals a, b.
Contents

Introduction

\mathcal{ALC}: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix
OWL and the Semantic Web

– OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
OWL and the Semantic Web

– OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
– They combine Web technology with description logic to make an *intelligent* web of data.
OWL and the Semantic Web

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an intelligent web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
OWL and the Semantic Web

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
 - These URIs can be URLs, hence they can state where we can find more information about an item.
OWL and the Semantic Web

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an *intelligent* web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
 - These URIs can be URLs, hence they can state where we can find more information about an item.
 - URIs can be set to be equal, so we can link two ontologies together by stating which URIs denote the same thing in different contexts.
OWL and the Semantic Web

- OWL (The Web Ontology Language) is a set of ontology languages with semantics based on description logics.
- They combine Web technology with description logic to make an intelligent web of data.
- In OWL, all individuals, concepts and roles are assigned a URI (Unique Resource Identifier).
 - These URIs can be URLs, hence they can state where we can find more information about an item.
 - URIs can be set to be equal, so we can link two ontologies together by stating which URIs denote the same thing in different contexts.
- OWL provides a concrete syntax for writing axioms, implementations of reasoners over the axioms, and a query language that applies the reasoners for knowledge extraction.
OWL 2 Profiles

- OWL has various *profiles* that correspond to different DLs.

- OWL Lite: SHIF (D);
- OWL DL: corresponds to SHION (D);
- OWL 2 DL: corresponds to SROIQ (D) and is the "normal" OWL 2 (sublanguage): "maximum" expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite R, and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to EL, and is a lightweight language with polynomial time reasoning;
 - OWL 2 RL: Corresponds to RL, and is designed for compatibility with rule-based inference tools.

- OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL's reasoning capabilities, so stay away if you can—and you almost always can.
OWL 2 Profiles

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: $SHIF(D)$;
OWL 2 Profiles

- OWL has various profiles that correspond to different DLs.
 - OWL Lite: $SHIF(D)$;
 - OWL DL: corresponds to $SHION(D)$;
OWL 2 Profiles

- OWL has various profiles that correspond to different DLs.
- OWL Lite: $SHIF(D)$;
- OWL DL: corresponds to $SHION(D)$;
- OWL 2 DL: corresponds to $SROIQ(D)$ and is the “normal” OWL 2 (sublanguage): “maximum” expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite R,
 - OWL 2 EL: Corresponds to EL,
 - OWL 2 RL: Corresponds to RL,
 - OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL's reasoning capabilities, so stay away if you can—and you almost always can.
OWL 2 Profiles

- OWL has various *profiles* that correspond to different DLs.
- OWL Lite: $SHIF(D)$;
- OWL DL: corresponds to $SHION(D)$;
- OWL 2 DL: corresponds to $SROIQ(D)$ and is the “normal” OWL 2 (sublanguage): “maximum” expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite$_R$, and is specifically designed for efficient database integration;
OWL 2 Profiles

- OWL has various profiles that correspond to different DLs.
- OWL Lite: \(\mathcal{SHIF}(\mathcal{D}) \);
- OWL DL: corresponds to \(\mathcal{SHION}(\mathcal{D}) \);
- OWL 2 DL: corresponds to \(\mathcal{SROIQ}(\mathcal{D}) \) and is the “normal” OWL 2 (sublanguage): “maximum” expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite\(_r\), and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to \(\mathcal{EL} \), and is a lightweight language with polynomial time reasoning;
OWL 2 Profiles

- OWL has various profiles that correspond to different DLs.
- OWL Lite: $SHIF(D)$;
- OWL DL: corresponds to $SHION(D)$;
- OWL 2 DL: corresponds to $SROIQ(D)$ and is the “normal” OWL 2 (sublanguage): “maximum” expressivity while keeping reasoning problems decidable—but still very very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite$_R$, and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to $E\mathcal{L}$, and is a lightweight language with polynomial time reasoning;
 - OWL 2 RL: Corresponds to $R\mathcal{L}$, and is designed for compatibility with rule-based inference tools.

– OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL’s reasoning capabilities, so stay away if you can—and you almost always can.
OWL 2 Profiles

- OWL has various profiles that correspond to different DLs.
- OWL Lite: $\text{SHIF}(\mathcal{D})$;
- OWL DL: corresponds to $\text{SHION}(\mathcal{D})$;
- OWL 2 DL: corresponds to $\text{SROIQ}(\mathcal{D})$ and is the “normal” OWL 2 (sublanguage): “maximum” expressivity while keeping reasoning problems decidable—but still very expensive;
- (Other) profiles are tailored for specific ends, e.g.,
 - OWL 2 QL: Corresponds to DL-Lite$_{\mathcal{R}}$, and is specifically designed for efficient database integration;
 - OWL 2 EL: Corresponds to \mathcal{EL}, and is a lightweight language with polynomial time reasoning;
 - OWL 2 RL: Corresponds to \mathcal{RL}, and is designed for compatibility with rule-based inference tools.
- OWL Full (not a proper DL): Anything goes: classes, relations, individuals, highly expressive, not decidable. But we want OWL’s reasoning capabilities, so stay away if you can—and you almost always can.
Contents

Introduction

ALC: Syntax and Semantics

Extensions and other DLs

OWL and the Semantic Web

Appendix
What cannot be expressed in DLs: Brothers

- Given terms

 \[\text{hasSibling} \quad \text{Male} \]

- ... a brother is *defined* to be a sibling who is male

- Best try:

 \[\text{hasBrother} \sqsubseteq \text{hasSibling} \]

 \[T \sqsubseteq \forall \text{hasBrother}.\text{Male} \]

 \[\exists \text{hasSibling}.\text{Male} \sqsubseteq \exists \text{hasBrother}.T \]

- Not enough to infer that *all* male siblings are brothers
What cannot be expressed in DLs: Diamond Properties

– A semi-detached house has a left and a right unit
– Each unit has a separating wall
– The separating walls of the left and right units are the same
– “diamond property”
– Try...

\[\text{SemiDetached} \sqsubseteq \exists \text{hasLeftUnit.Unit} \sqcap \exists \text{hasRightUnit.Unit} \]
\[\text{Unit} \sqsubseteq \exists \text{hasSeparatingWall.Wall} \]

– And now what?
What cannot be expressed in DLs: Connecting Properties

- Given terms

 \[\text{Person} \quad \text{hasChild} \quad \text{hasBirthday} \]

- A twin parent is defined to be a person who has two children with the same birthday.

- Try...

 \[\text{TwinParent} \equiv \text{Person} \sqcap \exists \text{hasChild}.\exists \text{hasBirthday} [...] \sqcap \exists \text{hasChild}.\exists \text{hasBirthday} [...] \]

- No way to connect the two birthdays to say that they’re the same.
 - (and no way to say that the children are not the same)

- Try...

 \[\text{TwinParent} \equiv \text{Person} \sqcap \geq 2 \text{hasChild}.\exists \text{hasBirthday} [...] \]

- Still no way of connecting the birthdays
Reasoning about Numbers

- Reasoning about natural numbers is undecidable in general.
- DL Reasoning is decidable
- Therefore, general reasoning about numbers can’t be “encoded” in DL
- For instance, there is no largest prime number:

\[\forall n. \exists p. (p > n \land \forall k, l. p = k \cdot l \rightarrow (k = 1 \lor l = 1)) \]

- Could try...

\[
\begin{align*}
\text{Number}(\text{zero}) \\
\text{Number} \sqsubseteq \exists \text{hasSuccessor}. \text{Number} \\
\top \sqsubseteq \leq 1 \text{ hasSuccessor}. \top
\end{align*}
\]

- Cannot encode addition, multiplication, etc.
- Note: a lot can be done with other logics, but not with DLs
 - Outside the intended scope of Description Logics
FO-rewritability

Assume \mathcal{T}_L is the set of TBoxes over the language L, and that UCQ is the set of queries that are unions of conjunctive queries, and let

$$\mathcal{K} \models q_1 \lor q_2 \iff \mathcal{K} \models q_1 \text{ or } \mathcal{K} \models q_2$$

$$\mathcal{K} \models q_1 \land q_2 \iff \mathcal{K} \models q_1 \text{ and } \mathcal{K} \models q_2$$

A description logic L enjoys first order rewritability if there exists a rewriting function $\rho : \mathcal{T}_L \times UCQ \rightarrow UCQ$, such that for any knowledge base $\mathcal{K} = \langle T, A \rangle$ over L and any conjunctive query $q(\vec{x})$ over \mathcal{K} we have that

$$A \models \rho(T, q(\vec{a})) \iff \mathcal{K} \models q(\vec{a})$$

This allows us to divide the querying up into two stages: i) translation of the query, and ii) ABox querying. This is useful for e.g. translating a query from a DL query to an SQL query where the ABox is a relational database.

E.g. let $T := \{ C_1 \sqsubseteq D, C_2 \sqsubseteq D, A \sqsubseteq C_1 \}$ and $q(x) := D(x)$ we have that for any Abox A that

$$A \models D(a) \lor C_1(a) \lor C_2(a) \lor A(a) \iff \langle T, A \rangle \models D(a)$$