
Developing Software for Small Devices
Bradley T Hughes – Trolltech AS



About Me

● American - from Amarillo, Texas

● Software Engineer for the Qt library

● Came to Norway and Trolltech in May 2000



About Trolltech

● Founded in 1994 by Haavard Nord (CEO) and 
Eirik Chambe-Eng (President)

● Two product lines: Qt and Qtopia

● Dual licensing strategy

● Headquarters in Oslo, offices in Brisbane, 
Australia, Palo Alto, California and Bejing, China

● Over 130 employees from 19 countries



Challenges

● Limited resources

– Screen

– Processor and memory

– Input capabilities

● Use model

– Different tasks

– Different mindset

– Different environment



Typical Usage

● Used in short bursts

● For a specific purpose

● Used in uncontrolled environments

● Industrial use

– Safety critical, non-distracting, vital information

● Consumer use

– Fashion accessory, expressing personality



Adapting to Usage Requirements

● User interface must be fast and easy to use

– Omit non-essential features

– Highlight most important information

– Streamline common operations

– Minimize text input

– Make it predictable (who has a phone manual?)

● Theming

– Personalization, customization



Device Limitations

● Small screen

● Little memory (RAM/ROM)

● Slow processor

● No floating point unit

● No keyboard

● Inaccurate “mouse”



Common Display Types

● Small physical size

● Low resolution

– PDA 320x240

– Phone 176x220

● High-end devices have higher resolutions, but 
same physical size



Adapting to Limited Screen Size

● Use Qt's layout classes

● Simplify the user interface

– Omit features

● Less text

● Use widgets that take less space

● Split into sub-dialogs; wizards

● Scrollbars and tabbed widgets



Input Limitations

● Text input is hard and/or slow

● Touch panels

– Unstable/jittery

– No mouse-over events
● No enter/leave notification
● No tooltip
● No auto-raise/highlight
● Cannot use cursor shape to convey information



Internationalization and Localization

● Decide early if i18n is needed

● Design user interface accordingly

– Use Qt's tr() mechanism

● Translation is part of the development process

– Changes to the UI are often necessary

– Be careful not to postpone translation until just 
before product launch

● Icons - “a picture is worth a thousand words”



Internationalization and Localization (2)

● Be prepared for l10n issues

– English: Info

– Norsk: Opplysninger

● Apart from Asian languages, English is one of the 
shortest languages

● And the list goes on...

– Symbols, currency, time, culture, reading direction 
etc.



Memory (RAM)

● Conserve memory

● Avoid memory leaks

– Long time between reboots/restarts

● Measuring memory use is difficult

– On Linux, top/ps include shared resources

– Inaccurate (buffers, cached)

● Use a memory profiler



Memory (ROM)

● Tailor the library size

● Optimize application for size

– Be careful with inline functions and templates

– Experiment with compiler options for fine tuning

● Select fonts

– True-type takes time to render, needs more code

– Pre-rendered takes space



Processor Limitations

● Optimize for speed

– Loop unrolling, cache coherency, etc.

– Cache data

– Lazy initialization

– Take advantage of idle time

● Don't trust your instincts – use a profiler

● Perceived speed vs. actual speed

– Give feedback, preliminary results



Power Management

● Device can sleep at any time

– Application may experience sudden time jumps

– May need to ask device to wake up at a later time

● Help conserve power

– Keep application idle (never busy wait)

– Avoid unnecessary, rapid timer events (animation)



ARM Platform Notes

● ARM processors have no FPU

– Kernel traps are extremely slow

– Best solution: soft-floats
● Software emulation built into toolchain
● Not available in older toolchains

– Alternative: use custom fixed/floating point class

● Enable framebuffer write-combining in kernel

– Patch developed by Intel for XScale



Development Tools

● Cross-compiling toolchain

– Compiler, linker, loader, utilities

– Libraries and header files

– May be available from hardware vendor

– May need to build your own

● Emulators

– Commercially and freely available

– May not always emulate limited resources



More Development Tools

● Valgrind

– Memory checker, memory profiler, cpu profiler

● Virtual framebuffer (QVfb)

– Simulated framebuffer on X11

– Can emulate a touch screen, different depths, 
resolutions

– Not an emulator, applications run natively



Development Hardware

● Reference boards

– Useful for development phase

– Easy to get software running

– Not well-suited for usability testing

– Form-factor boards

● “Off-the-shelf “ hardware

– USB memory sticks, CompactFlash, BlueTooth

– Ethernet for PC and/or device



Running on the Device

● Cross-compile, run from USB key, 
CompactFlash, etc.

● Cross-compile, run from NFS or SMB exported 
file system

● Flash new ROM via serial console (when 
developing an entire suite of applications)

● Use Qt's VNC graphics driver (run on the device, 
test from workstation)



Debugging Your Software

● Things will break

● Many emulators are also debuggers

● Debuggers for various devices exist

– You actually debug on the device (a plus)

– Tedious (constantly moving between workstation 
and device)

● Recommendation: remote debugging

– Debug on device, control from workstation



What to Take Home

Writing software for small devices is very 
different when considering the development 

process, user interface design, hardware, 
end-user, and more.


