
Assignment 5 (week8)

Deadline: Nov 1st, 23:59

Important: The scripts of this assignment should be saved in a subdirectory
named week8 of your INF3331 github repository. Points will be given on
correctness of the solutions, the documentation and the code readibility.

5.0 Introduction

In exercises 5.1 - 5.5 we will implement a model for simulating the dissipation of
heat within a material in a given domain over time. For simplicity, we assume
that the simulation domain is a 2-dimensional rectangle.

The heat dissipation in a material are described by a partial differential equation,
the heat equation:

∂u

∂t
− ν∆u = f (1)

Here, ν (nu) is the (real-valued) material-specific thermal diffusivity, u is the
space- and time-dependent temperature within the material, and f is a heat
source. The Laplace operator is defined as ∆u = ∂2u

∂x2 + ∂2u
∂y2 , and ∂

∂ denotes the
partial derivative. Two snapshots of the solution of heat equation at different
times are shown in figure 1.

5.1 Python implementation of the heat equation (8 points)

Implement a solver for the heat equation 1 in Python. This implementation
should only use Python objects, such as lists, tuples and dictionaries, but not
numpy arrays (numpy and C versions will be implemented in the next exercise).

For a rectangle of size n×m, the temperature at any given time is stored as a
two-dimensional list u of shape (n,m). The value of u[i][j] shall represent the
temperature at the coordinates i, j.

The model starts with a user-specified, initial temperature distribution at time
t0. At any time t during the simulation, the model performs an update step to
proceed to time t+ dt, with a user-defined timestep dt. The update formula is:

u_new[i][j] = u[i][j]
+ dt*(nu*u[i-1][j] + nu*u[i][j-1] - 4*nu*u[i][j]
+ nu*u[i][j+1] + nu*u[i+1][j] + f[i][j])

1

Figure 1: The temperature at time 0.0 (left) and 1000.0 (right).

2

This update step is repeated until the end of simulation time is reached. We
assume that the temperature values at the boundaries are fixed during time -
that is the update step should not update the boundary values.

Your implementation should be parametrised with the start time t0, the end
time t1, the time step dt, the rectangle dimensions n, m, the initial temperature
distribution u (an n×m list), a heat source function f (also a n×m list) and
the thermal diffusivity nu (a material specific parameter, a float).

Run the simulation on a 50 × 100 large rectangle, starting with u = 0 at t0 = 0
until t1 = 1000 with a timestep dt = 0.1, ν = 1 (i.e. nu=1) and f set to 1
everywhere. Plot the results using matplotlib (for example with pyplot.imshow
and pyplot.colorbar or scitools on UiO computers) and compare them with
figure 1.

File: heat_equation.py

5.2 NumPy and C implementations (8 points)

Re-implement exercise 5.1 in two variations: one using numpy arrays and one
based on a mixed C/Python implementation. The numpy solution should
make use of vectorisation and avoid copying of arrays if possible. For the
mixed implementation, only the numerical part (the update step) needs to be
implemented in C, so that the model can still benefit from the plotting tools in
Python. You may choose which strategy to use for integrating the C code in
Python (we recommend weave)

Files: heat_equation_numpy.py and heat_equation_X.py (replace X with the
tool you used for the C solution)

5.3 Testing (4 points)

Demonstrate that your implementation is mathematically correct by solving the
heat equation with following heat source term:

f[i][j] = nu*((2*pi/(m-1))**2 + (2*pi/(n-1))**2) \
*sin(2*pi/(n-1)*i)*sin(2*pi/(m-1)*j)

Here the i index goes from 0 until n-1, and the j index from 0 until m-1. For large
simulation times, the solution of the heat equation converges to the analytical
solution

analytic_u[i][j] = sin(2*pi/(n-1)*i)*sin(2*pi/(m-1)*j)

3

Use the remaining parameters (rectangle size, initial u, t0, t1, dt and ν) from
in 5.1, but with the new heat source and compute the difference between final
solution time and the analytical solution. Then print the component of the
difference with the maximum absolute value:

err = (abs(u - analytic_u)).max()

This error should be below 0.0012. Check that the error decreases if you increase
the size of the rectangle (you might have to increase the final time for this test).

5.4 Develop a user interface (4 points)

Implement a common user interface for your Python solvers as well as for the
C-solution using the argparse module. This user-interface should offer at least
the following command line options:

• Option to specify the model parameters such as rectangle dimensions,
start-time, end-time, timestep, thermal diffusivity coefficient and constant
heat source;

• Name of an output file in which the program stores the solution at the final
time, or an input file which is loaded and used as the initial temperature1;

• Option to save a plot of final temperature as an image;
• Option to switch between the three implementations (pure Python, Numpy,

C);
• Option to activate verbose mode, which prints what the program does.
• A switch for turning on the timeit module, which then reports important

timings at the end of the program.

Give the options useful name and description/help messages.

Files: heat_equation_ui.py

5.5 Write a Latex report (6 points)

Describe what you have done in a Latex report. In addition, add a runtime
comparison for the different implementations and explain the differences.

File: report.tex and report.pdf

1Use for example the ‘pickle‘ module. The input/output options can be used to check-
point/restart the simulation, e.g. on supercomputers.

4

5.6 (INF4331 students only) More interfaces (10 points)

Implement 2 more implementations of the heat equation solver using different
C/C++ integration tools (of your choice, for example weave, swig, or cython).
Together with 5.2 you will have 3 mixed C implementations.

Files: 2 x heat_equation_X.py (replace X with the tool you used for the C
solution)

5.7 Github activity plot (10 bonus points :)

Write a Python script that takes a path to a github directory. The script inspects
the timestamps of all commits in that repository and generates a histogramm
plot that visualises the activity of the repository over time2.

The script should:

1) Check that the given filepath is provided and valid and that it is a github
repository (checking e.g. the exit code of the command git rev-parse
--git-dir). If the input does not exist or is invalid print a useful error
message. Use argparse for handling the command lines options.

2) Write a function that takes in the git directory as a parameter. The
function then executes git log and extracts the authors and dates for all
commits. Use a regular rexpression to obtain these information and return
the results.

3) Use matplotlib or scitools to visualise the commit activity of that repository
over time. The exact type of plot is up to you. The different authors
should also be visible in this plot, for example by using different colors
and a legend. the plot as a pdf file.

4) Add command line options for saving the plot as a PDF or an image.

File: github_activity.py

Total points (INF3331): 30 + 10 bonus points

Total points (INF4331): 40 + 10 bonus points

2Similar to https://github.com/OpenTidalFarm/OpenTidalFarm/graphs/contributors

5

	Assignment 5 (week8)
	5.0 Introduction
	5.1 Python implementation of the heat equation (8 points)
	5.2 NumPy and C implementations (8 points)
	5.3 Testing (4 points)
	5.4 Develop a user interface (4 points)
	5.5 Write a Latex report (6 points)
	5.6 (INF4331 students only) More interfaces (10 points)
	5.7 Github activity plot (10 bonus points :)

