
OpenMP programming

OpenMP programming – p. 1

Overview

Basic use of OpenMP: API for shared-memory parallel programming

Chapter 17 in Michael J. Quinn, Parallel Programming in C with MPI and
OpenMP

OpenMP programming – p. 2

Thread programming for shared memory

Thread programming is a natural model for shared memory
Execution unit: thread
Many threads have access to shared variables
Information exchange is (implicitly) through the shared variables

Several thread-based programming environments
Pthreads
Java threads
Intel Threading Building Blocks (TBB)
OpenMP

OpenMP programming – p. 3

OpenMP

OpenMP is a portable standard for shared-memory programming

The OpenMP API consists of
compiler directives
library routines
environment variables

Advantages:
User-friendly
Incremental parallelization of a serial code
Possible to have a single source code for both serial and
parallelized versions

Disadvantages:
Relatively limited user control
Most suitable for parallelizing loops (data parallelism)
Performance?

OpenMP programming – p. 4

The programming model of OpenMP

Multiple cooperating threads are allowed to run simultaneously

Threads are created and destroyed dynamically in a fork-join pattern
An OpenMP program consists of a number of parallel regions
Between two parallel regions there is only one master thread
In the beginning of a parallel region, a team of new threads is
spawned
The newly spawned threads work simultaneouly with the master
thread
At the end of a parallel region, the new threads are destroyed

OpenMP programming – p. 5

Fork-join model

https://computing.llnl.gov/tutorials/openMP/

OpenMP programming – p. 6

The memory model of OpenMP

Most variables are shared between the threads

Each thread has the possibility of having some private variables
Avoid race conditions
Passing values beween the sequential part and the parallel region

OpenMP programming – p. 7

OpenMP: first things first

Always remember the header file #include <omp.h>

Insert compiler directives (#pragma omp...), possibly also some
OpenMP library routines

Compile
For example, gcc -fopenmp code.c

Assign the environment variable OMP NUM THREADS

It specifies the total number of threads inside a parallel region, if
not otherwise overwritten
For example, in connection with submitting a batch job, it is often
necessary to modify the .bashrc file:
export OMP_NUM_THREADS=x

OpenMP programming – p. 8

General code structure

#include <omp.h>

main () {

int var1, var2, var3;

/* serial code */
/* ... */

/* start of a parallel region */
#pragma omp parallel private(var1, var2) shared(var3)

{
/* ... */

}

/* more serial code */
/* ... */

/* another parallel region */
/* ... */

}

OpenMP programming – p. 9

Important library routines

int omp get num threads ();
returns the number of threads inside a parallel region

int omp get thread num ();
returns the “thread id” for each thread inside a parallel region

OpenMP programming – p. 10

Parallel region

The following compiler directive creates a parallel region
#pragma omp parallel { ... }

Clauses can be added at the end of the directive

Most often used clauses:
default(shared) or default(none)
public(list of variables)

private(list of variables)

OpenMP programming – p. 11

Hello-world in OpenMP

#include <omp.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
int th_id, nthreads;

#pragma omp parallel private(th_id)
{

th_id = omp_get_thread_num();
printf("Hello World from thread %d\n", th_id);

#pragma omp barrier

if (th_id == 0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);

}
}

return 0;
}

OpenMP programming – p. 12

Work-sharing contructs

omp for omp sections omp single

https://computing.llnl.gov/tutorials/openMP/

OpenMP programming – p. 13

Parallel for loop

Inside a parallel region, the following compiler directive can be used
to parallelize a for-loop:
#pragma omp for

Clauses can be added at the end of the directive
schedule(static, chunk size)

schedule(dynamic, chunk size)

schedule(guided, chunk size)

schedule(auto)

schedule(runtime)

private(list of variables)

reduction(operator:variable)

nowait

OpenMP programming – p. 14

Example

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main ()
{

int i, chunk;
float a[N], b[N], c[N];

for (i=0; i < N; i++)
a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk)

for (i=0; i < N; i++)
c[i] = a[i] + b[i];

} /* end of parallel region */
}

OpenMP programming – p. 15

More about parallel for

The number of loop iterations can not be non-deterministic
break, return, exit, goto not allowed inside the for-loop

The loop index is private to each thread

The reduction variable is special
During the for-loop there is a local private copy in each thread
At the end of the for-loop, all the local copies are combined
together by the reduction operation

Unless the nowait clause is used, an implicit barrier synchronization
will be added at the end by the compiler

#pragma omp parallel and #pragma omp for can be
combined into
#pragma omp parallel for

OpenMP programming – p. 16

Example of computing inner-product

int i;
double sum = 0.;
...

#pragma omp parallel for default(shared) private(i) reduction(+:sum)
for (i=0; i<length; i++)

sum += a[i]*b[i];
}

OpenMP programming – p. 17

Parallel sections

Inside a parallel region:
#pragma omp parallel sections
{
#pragma omp section

...
#pragma omp section

...
#pragma omp section

...
}

OpenMP programming – p. 18

Example

#include <omp.h>
#define N 1000

main ()
{

int i;
float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) {
a[i] = i * 1.5;
b[i] = i + 22.35;

}

#pragma omp parallel shared(a,b,c,d) private(i)
{
#pragma omp sections

{
#pragma omp section

for (i=0; i < N; i++)
c[i] = a[i] + b[i];

#pragma omp section
for (i=0; i < N; i++)
d[i] = a[i] * b[i];

} /* end of sections */
} /* end of parallel region */

}
OpenMP programming – p. 19

Single execution

#pragma omp single { ... }

#pragma omp master { ... }

OpenMP programming – p. 20

Coordination and synchronization

#pragma omp critical { block of codes }

#pragma omp atomic { only one statement }

#pragma omp barrier

OpenMP programming – p. 21

Data scope

OpenMP data scope attribute clauses:
private

firstprivate

lastprivate

shared

reduction

Purposes:
define how and which variables are transferred to a parallel
region (and back)
define which variables are visible to all threads in a parallel
region, and which variables are privately allocated to each thread

OpenMP programming – p. 22

Some remarks

When entering a parallel region, the private clause ensures each
thread having its own new variable instances. The new variables are
assumed to be uninitialized.

A shared variable exists in only one memory location and all threads
can read and write to that address. It’s the programmer’s
responsibility to ensure that multiple threads properly access a
shared variable.

The firstprivate clause combines the behavior of the private
clause with automatic initialization.

The lastprivate clause combines the behavior of the private
clause with a copy back (from the last loop iteration or section) to the
original variable outside the parallel region.

OpenMP programming – p. 23

Parallelizing nested for loops

Serial code
for (i=0; i<100; i++)

for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j]

Parallelization
#pragma omp parallel for private(j)
for (i=0; i<100; i++)

for (j=0; j<100; j++)
a[i][j] = b[i][j] + c[i][j]

Why not parallelize the inner loop?
to save overhead of repeated thread forks-joins

Why must j be private?
to avoid race condition among the threads

OpenMP programming – p. 24

Exercises

Exercise 17.2 from the textbook

Exercise 17.3 from the textbook

Write a simple C code to compute the inner-product of two very long
vectors. Use #pragma omp parallel for to do the
parallelization. Choose different schedulers and chunksizes and
observe the time usage.

OpenMP programming – p. 25

	Overview
	Thread programming for shared memory
	OpenMP
	The programming model of OpenMP
	Fork-join model
	The memory model of OpenMP
	OpenMP: first things first
	General code structure
	Important library routines
	Parallel region
	Hello-world in OpenMP
	Work-sharing contructs
	Parallel for loop
	Example
	More about parallel for
	Example of computing inner-product
	Parallel sections
	Example
	Single execution
	Coordination and synchronization
	Data scope
	Some remarks
	Parallelizing nested for loops
	Exercises

