OpenMP programming

OpenMP programming —p. 1

Overview

® Basic use of OpenMP: API for shared-memory parallel programming

® Chapter 17 in Michael J. Quinn, Parallel Programming in C with MPI and
OpenMP

Cick to LOOK NS DE!

PARALLEL IFIRCICGIEARTNIING

OpenMP programming — p. 2

Thread programming for shared memory

® Thread programming is a natural model for shared memory
Execution unit: thread
Many threads have access to shared variables
Information exchange is (implicitly) through the shared variables

® Several thread-based programming environments
o Pthreads
» Java threads
» |Intel Threading Building Blocks (TBB)
o OpenMP

OpenMP programming — p. 3

OpenMP

OpenMP is a portable standard for shared-memory programming

The OpenMP API consists of
o compiler directives

library routines

environment variables

Advantages:

o User-friendly

Incremental parallelization of a serial code

» Possible to have a single source code for both serial and
parallelized versions

Disadvantages:

» Relatively limited user control

» Most suitable for parallelizing loops (data parallelism)

» Performance?

OpenMP programming — p. 4

The programming model of OpenMP

® Multiple cooperating threads are allowed to run simultaneously

® Threads are created and destroyed dynamically in a fork-join pattern
o An OpenMP program consists of a number of parallel regions
» Between two parallel regions there is only one master thread

In the beginning of a parallel region, a team of new threads is
spawned

The newly spawned threads work simultaneouly with the master
thread

» Atthe end of a parallel region, the new threads are destroyed

OpenMP programming — p. 5

Fork-join model

w— —
master
thread

{ parallel region } { parallel region }

—

Z H O 4

https://conputing.lInl.gov/tutorials/openM/

OpenMP programming — p. 6

The memory model of OpenMP

® Most variables are shared between the threads

® Each thread has the possibility of having some private variables
Avoid race conditions
Passing values beween the sequential part and the parallel region

OpenMP programming —p. 7

OpenMP: first things first

Always remember the header file #i ncl ude <onp. h>

Insert compiler directives (#pr agma onp. . .), possibly also some
OpenMP library routines

Compile

o For example, gcc -fopennp code. c

Assign the environment variable OMP_NUM.THREADS

» |t specifies the total number of threads inside a parallel region, if
not otherwise overwritten

o For example, in connection with submitting a batch job, it is often
necessary to modify the . bashr c file:

export OVP_NUM THREADS=Xx

OpenMP programming —p. 8

General code structure

#i ncl ude <onp. h>
main () {
int varl, var2, var3;

[+ serial code =*/
[~ ... =*[

[+ start of a parallel region =/
#pragnma onp parallel private(varl, var2) shared(var3)

[~ ... =*/
}
[+ nore serial code */
[~ ... =*[

[+ another parallel region */
[... */

OpenMP programming — p. 9

Important library routines

® int onp_get _numthreads ();
returns the number of threads inside a parallel region

® int onp_get_thread.num ();
returns the “thread id” for each thread inside a parallel region

OpenMP programming — p. 10

Parallel region

The following compiler directive creates a parallel region
#pragma onp parallel { ... }

Clauses can be added at the end of the directive

Most often used clauses:

o defaul t(shared) ordefaul t(none)
o public(list_of_variabl es)

o private(list_of variabl es)

OpenMP programming — p. 11

Hello-world in OpenMP

#i ncl ude <onp. h>
#i ncl ude <stdio. h>

int main (int argc, char *argv[])

{

int th_id, nthreads;
#pragnma onp parallel private(th_id)

th id = onp_get thread num();
printf("Hello Wrld fromthread %\n", th_id);

#pragnma onp barrier
if (th.id==0) {

nt hreads = onp_get numt hreads();
printf("There are % threads\n", nthreads);

}
}

return O;

OpenMP programming — p. 12

Work-sharing contructs

l master thread l master thread l master thread

FORK FORK

i e | | e | ||

FORK

JOIN JOIN JOIN
l master thread l master thread l master thread
onp for onp sections onp single

https://conputing.lInl.gov/tutorials/openM/

OpenMP programming — p. 13

Parallel for loop

® |[nside a parallel region, the following compiler directive can be used
to parallelize a f or -loop:
#pragma onp for

® Clauses can be added at the end of the directive
o schedul e(static, chunk.si ze)

schedul e(dynam ¢, chunk_si ze)

schedul e(gui ded, chunk_si ze)

schedul e(aut o)

schedul e(runti ne)

private(list_of vari abl es)

reducti on(operator:vari abl e)

nowai t

o o o o o o 0

OpenMP programming — p. 14

Example

#i ncl ude <onp. h>
#def i ne CHUNKSI ZE 100
#define N 1000

main ()

I, chunk;

t

oat a[N, b[N, c[N;

for (i=0; I < N, |++)
af[i] =Db[i] =1 = 1.0;

chunk = CHUNKSI ZE;

I N
fl

#pragma onp parallel shared(a, b, c,chunk) private(i)

{

#pragma onp for schedul e(dynam c, chunk)
for (1=0; I < N, i++4)
c[i] =a[i] + b[i];
} [+ end of parallel region =/

}

OpenMP programming — p. 15

More about parallel for

The number of loop iterations can not be non-deterministic
break, return,exit, goto notallowed inside the f or -loop

The loop index is private to each thread

The reduction variable is special

During the f or -loop there is a local private copy in each thread

Atthe end of the f or -loop, all the local copies are combined
together by the reduction operation

Unless the nowai t clause is used, an implicit barrier synchronization
will be added at the end by the compiler

#pragma onp parall el and#pragnma onp for can be
combined into
#pragma onp parallel for

OpenMP programming — p. 16

Example of computing inner-product
int i;
doubl e sum = 0. ;

#pragma onp parallel for default(shared) private(i) reduction(+:sum
for (1=0; i<length; i++)
sum += af[i]*b[i];
}

OpenMP programming — p. 17

Parallel sections

Inside a parallel region:
#pragnma onp parallel sections

#pragnma onp section
#p?égna onp section
#p?égna onp section

}

OpenMP programming — p. 18

#i ncl ude <onp. h>
#define N 1000

main ()

Int 1;
fl

Example

oat a[N], b[N, c[N, d[N;

for (i=0; i <N i++) {

af 1]
b[i]
}

I *x 1.
| + 22.35;

#pragma onp parallel shared(a,b,c,d) private(i)

{

#pragnma onp sections

#pragnma onp section
for (1=0; I < N,

| ++)

cli] =a[i] + b[i];

#pragnma onp section
for (1=0; I < N,

| ++)

dfi] =a[i] * b[i];
} [+ end of sections x/

} /* end of parallel

}

regi on =*/

OpenMP programming — p. 19

Single execution

® #pragma onmp single { ... }
® #pragma onp master { ... }

OpenMP programming — p. 20

Coordination and synchronization

® #pragma onp critical { block of codes }
® #pragma onp atomic { only one statenment }

® #Hpragma onp barrier

OpenMP programming — p. 21

Data scope

® OpenMP data scope attribute clauses:
® private
o firstprivate
o |astprivate
shared
reduction

® Purposes:

» define how and which variables are transferred to a parallel
region (and back)

» define which variables are visible to all threads in a parallel
region, and which variables are privately allocated to each thread

OpenMP programming — p. 22

Some remarks

When entering a parallel region, the pri vat e clause ensures each
thread having its own new variable instances. The new variables are
assumed to be uninitialized.

A shared variable exists in only one memory location and all threads
can read and write to that address. It's the programmer’s
responsibility to ensure that multiple threads properly access a
shared variable.

The firstprivat e clause combines the behavior of the pri vat e
clause with automatic initialization.

The | ast pri vat e clause combines the behavior of the pri vat e
clause with a copy back (from the last loop iteration or section) to the
original variable outside the parallel region.

OpenMP programming — p. 23

Parallelizing nested for loops

Serial code

for (i=0; 1<100; i++)
for (j=0; j<100; j++)
a[i][j] =bl[i][j] + c[i][]]

Parallelization

#pragma onp parallel for private(j)
for (i=0; i1<100; i ++)
for (j=0; j<100; j++)
a[t][]] =Db[i][)] + cl[i][J]

Why not parallelize the inner loop?

» to save overhead of repeated thread forks-joins
Why mustj be private?

to avoid race condition among the threads

OpenMP programming — p. 24

°

Exercises

Exercise 17.2 from the textbook
Exercise 17.3 from the textbook

Write a simple C code to compute the inner-product of two very long
vectors. Use #pragma onp parallel for todothe
parallelization. Choose different schedulers and chunksizes and

observe the time usage.

OpenMP programming — p. 25

	Overview
	Thread programming for shared memory
	OpenMP
	The programming model of OpenMP
	Fork-join model
	The memory model of OpenMP
	OpenMP: first things first
	General code structure
	Important library routines
	Parallel region
	Hello-world in OpenMP
	Work-sharing contructs
	Parallel for loop
	Example
	More about parallel for
	Example of computing inner-product
	Parallel sections
	Example
	Single execution
	Coordination and synchronization
	Data scope
	Some remarks
	Parallelizing nested for loops
	Exercises

