Floyd’s algorithm
Overview

Chapter 6 from Michael J. Quinn, Parallel Programming in C with MPI and OpenMP

Floyd’s algorithm: solving the all-pairs shortest-path problem
Finding shortest paths

- Starting point: a graph of vertices and weighted edges

- Each edge is of a direction and has a length
 - if there’s path from vertex \(i \) to \(j \), there may not be path from vertex \(j \) to \(i \)
 - path length from vertex \(i \) to \(j \) may be different than path length from vertex \(j \) to \(i \)

- Objective: finding the shortest path between every pair of vertices \((i \rightarrow j)\)

- Application: table of driving distances between city pairs
Adjacency matrix

There are n vertices

The direct path length from vertex i to vertex j is stored as $a[i, j]$

An $n \times n$ adjacency matrix a keeps the entire connectivity info

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>∞</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>4</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>2</td>
<td>∞</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

If $a[i, j]$ is ∞, it means there is no direct path from vertex i to vertex j
Example of all-pairs shortest path

For the adjacency matrix given on the previous slide, the solution of the all-pairs shortest path is as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>∞</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>15</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>11</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Table of shortest path lengths
Floyd’s algorithm

Input: n — number of vertices
a — adjacency matrix
Output: Transformed a that contains the shortest path lengths

for $k \leftarrow 0$ to $n - 1$
 for $i \leftarrow 0$ to $n - 1$
 for $j \leftarrow 0$ to $n - 1$
 $a[i, j] \leftarrow \min(a[i, j], a[i, k] + a[k, j])$
 endfor
 endfor
endfor
Some observations

- Floyd’s algorithm is an exhaustive and incremental approach
- The entries of the a-matrix are updated n rounds
- $a[i, j]$ is compared with all n possibilities, that is, against $a[i, k] + a[k, j]$, for $0 \leq k \leq n - 1$
- n^3 of comparisons in total
Source of parallelism

- During the k'th iteration, the work is (in C syntax)

  ```c
  for (i=0; i<n; i++)
      for (j=0; j<n, j++)
          a[i][j] = MIN( a[i][j], a[i][k]+a[k][j] );
  ```

- Can all the entries in a be updated concurrently?
 - Yes, because the k'th column and the k'th row remain the same during the k'th iteration!
 - **Note that** $a[i][k]=\text{MIN}(a[i][k],a[i][k]+a[k][j])$ will be the same as $a[i][k]$
 - **Note that** $a[k][j]=\text{MIN}(a[k][j],a[k][k]+a[k][j])$ will be the same as $a[k][j]
Design of a parallel algorithm

Using Foster’s design methodology:

- **Partitioning** — each $a[i, j]$ is a primitive task
- **Communication** — during the k’th iteration, updating $a[i, j]$ needs values of $a[i, k]$ and $a[k, j]$
 - broadcast $a[k, j]$ to $a[0, j], a[1, j], \ldots, a[n - 1, j]$
 - broadcast $a[i, k]$ to $a[i, 0], a[i, 1], \ldots, a[i, n - 1]$

Floyd’s algorithm – p. 9
Agglomeration and mapping

- Let one MPI process be responsible for a piece of the a matrix.
- Memory storage of a is accordingly divided.
- The division can in principle be arbitrary, as long as the number of all $a[i,j]$ entries is divided evenly.
- However, a row-wise block data division is very convenient.
 - 2D arrays in C are row-major.
 - Easy to send/receive an entire row of a.
- We therefore choose to assign one MPI process with a number of consecutive rows of a.

Floyd's algorithm – p. 10
Communication pattern

Recall that in the k’th iteration:

$$a[i, j] \leftarrow \min(a[i, j], \ a[i, k] + a[k, j])$$

Since entries of a are divided into rowwise blocks, so $a[i, k]$ is also in the memory of the MPI process that owns $a[i, j]$.

However, $a[k, j]$ is probably in another MPI process’s memory.

Communication is therefore needed!

Before the k’th iteration, the MPI process that owns the k’th row of the a matrix should broadcast this row to everyone else.
Recap: creating 2D arrays in C

To create a 2D array with m rows and n columns:

```
int **B, *Bstorage, i;
...
Bstorage=(int*)malloc(m*n*sizeof(int));
B=(int**)malloc(m*sizeof(int*));
for (i=0; i<m; i++)
   B[i] = &Bstorage[i*n];
```

The underlying storage is contiguous, making it possible to send and receive an entire 2D array.
Global index vs. local index

Suppose a matrix (2D array) is divided into row-wise blocks and distributed among \(p \) MPI processes.

Process \(i \) only allocates storage for its assigned row block from row \(\lfloor (i \cdot n)/p \rfloor \) of matrix \(a \) until row \(\lfloor ((i + 1) \cdot n)/p \rfloor - 1 \).

We need to know: Which global row does a local row correspond to?

Mapping: local index \(\rightarrow \) global index

On process number \(\text{proc}_{\text{id}} \):
\[
\text{global}_{\text{index}} = \text{BLOCKLOW}(\text{proc}_{\text{id}}, p, n) + \text{local}_{\text{index}}
\]
Main work of parallel Floyd’s algorithm

```c
void compute_shortest_paths (int id, int p, dtype **a, int n)
{
    int i, j, k;
    int offset;  /* Local index of broadcast row */
    int root;    /* Process controlling row to be bcast */
    int* tmp;    /* Holds the broadcast row */
    tmp = (dtype *) malloc (n * sizeof(dtype));
    for (k = 0; k < n; k++) {
        root = BLOCK_OWNER(k,p,n);
        if (root == id) {
            offset = k - BLOCK_LOW(id,p,n);
            for (j = 0; j < n; j++)
                tmp[j] = a[offset][j];
        }
        MPI_Bcast (tmp, n, MPI_TYPE, root, MPI_COMM_WORLD);
        for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
            for (j = 0; j < n; j++)
                a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);
    }
    free (tmp);
}
```
Matrix input

- Recall that each MPI process only stores a part of the matrix.

 - When reading a matrix from a file, we can:
 - Let only process \(p - 1 \) do the input.
 - Once the number of rows needed by process \(i \) are read in, they are sent from process \(p - 1 \) to process \(i \) using `MPI_Send`.
 - Process \(i \) must issue a matching `MPI_Recv`.

- The above simple strategy is not parallel.

- Parallel I/O can be done using MPI-2 commands.
Matrix output

For example, we let only process 0 do the output
Each process needs to send its part of a to process 0
To avoid many processes sending its entire subdata to process 0 at the same time
 Process 0 communicates with the other processes in turn
 Each process waits for a “hint” (a short message) from process 0 before sending its data (a large message)
Deadlock

Typical deadlock example 1

```c
if (rank==0) {
    MPI_Recv(&b,1,MPI_INT,1,tag_b,MPI_COMM_WORLD,&status);
    MPI_Send(&a,1,MPI_INT,1,tag_a,MPI_COMM_WORLD);
} else if (rank==1) {
    MPI_Recv(&a,1,MPI_INT,0,tag_a,MPI_COMM_WORLD,&status);
    MPI_Send(&b,1,MPI_INT,0,tag_b,MPI_COMM_WORLD);
}
```

Typical deadlock example 2

```c
if (rank==0) {
    MPI_Send(&a,1,MPI_INT,1,1,MPI_COMM_WORLD);
    MPI_Recv(&b,1,MPI_INT,1,1,MPI_COMM_WORLD,&status);
} else if (rank==1) {
    MPI_Send(&b,1,MPI_INT,0,0,MPI_COMM_WORLD);
    MPI_Recv(&a,1,MPI_INT,0,0,MPI_COMM_WORLD,&status);
}
```
Analysis

Serial algorithm time usage: $n^3 \chi$

Parallel algorithm
- non-communication time usage: $n^2 \lceil n/p \rceil \chi$
- communication (broadcast) time usage: $n \lceil \log_2 p \rceil (\lambda + 4n/\beta)$
 - assuming each entry of matrix a needs 4 bytes
 - assuming λ as communication latency
 - assuming β as communication bandwidth (# bytes per second)

Read Section 6.7 for a more detailed analysis that allows overlap between computation and communication
Exercises

- Write an MPI program that uses p processes to produce a JPEG picture of $n \times n$ pixels. The picture should have white background and a black circle (of radius $n/4$) in the middle. (The existing C code collection http://heim.ifi.uio.no/xingca/inf-verk3830/simple-jpeg.tar.gz can be used.)

- Implement the complete Floyd’s algorithm and try it on a large enough adjacency matrix.