Matrix-vector multiplication
Overview

Chapter 8 from *Michael J. Quinn, Parallel Programming in C with MPI and OpenMP*

We want to calculate $c = Ab$, where A is a $m \times n$ matrix, b is a vector of length n, and c is a vector of length m

Many MPI commands will be involved
Introduction

\[A = \begin{bmatrix} a_{0,0} & a_{0,1}, & a_{0,2} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1}, & a_{1,2} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m-1,0} & a_{m-1,1}, & a_{m-1,2} & \cdots & a_{m-1,n-1} \end{bmatrix} \]

\[b = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix} \]

\[c = Ab = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{bmatrix} \]

where \(c_i = a_{i,0}b_0 + a_{i,1}b_1 + a_{i,2}b_2 + \cdots + a_{i,n-1}b_{n-1} \)
Example

\[
A = \begin{bmatrix}
2 & 1 & 3 & 4 & 0 \\
5 & -1 & 2 & -2 & 4 \\
0 & 3 & 4 & 1 & 2 \\
2 & 3 & 1 & -3 & 0
\end{bmatrix}
\quad b = \begin{bmatrix}
3 \\
1 \\
4 \\
0 \\
3
\end{bmatrix}
\quad c = \begin{bmatrix}
19 \\
34 \\
25 \\
13
\end{bmatrix}
\]

For example, \(c_1 = 5 \times 3 + (-1) \times 1 + 2 \times 4 + (-2) \times 0 + 4 \times 3 = 34\).
Sequential algorithm

Matrix-vector multiplication

Input: $a[0..m-1, 0..n-1]$ — matrix with dimension $m \times n$

$b[0..n-1]$ — vector with dimension $n \times 1$

Output: $c[0..m-1]$ — result vector with dimension $m \times 1$

for $i \leftarrow 0$ to $m - 1$
 $c[i] \leftarrow 0$
 for $j \leftarrow 0$ to $n - 1$
 $c[i] \leftarrow c[i] + a[i, j] \times b[j]$
 endfor
endfor
Observations

- Value of c_i is calculated by the an inner product (or dot product) between row i of A and vector b
 - needs n multiplications and $n - 1$ additions
- Total computational complexity: $O(mn)$
- Value of c_i does not depend on value of c_k
Decomposition of matrix A

- Data decomposition of matrix A gives rise to parallelism
- Three strategies of decomposition
 - Rowwise block-striped decomposition
 - one process is responsible for a contiguous group of $\lfloor m/p \rfloor$ or $\lceil m/p \rceil$ rows of matrix A
 - Columnwise block-striped decomposition
 - one process is responsible for a contiguous group of $\lfloor n/p \rfloor$ or $\lceil n/p \rceil$ columns of matrix A
 - Checkerboard block decomposition
 - one process is responsible for a block of matrix A
Data distribution of vectors b and c

- Two ways of distributing b and c:
 - replicated on all processes
 - block decomposition

- Why is it acceptable for each process to store the entire b and/or c?
 - storage of A: mn values
 - storage of b: n values
 - storage of c: m values
Three parallelization strategies

1. Rowwise block-striped decomposition of matrix A, replicated vectors
2. Columnwise block-striped decomposition of matrix A, block-decomposed vectors
3. Checkerboard block decomposition of matrix A, vectors block decomposed
Examples of decompositions

Rowwise block-striped

Columnwise block-striped

Checkerboard block
Rowwise block-striped decomposition

- Each row of matrix A is a primitive task
- Vectors b and c are replicated among the primitive tasks
- Task i has row i and a copy of b
 - it can compute c_i as inner product between row i and vector b
- To let each task have a replicated entire vector c, communication is needed
 - an all-gather step
- Agglomeration \Rightarrow a group of contiguous rows to a process
Complexity analysis

- Suppose \(m = n \), sequential computational complexity \(O(n^2) \)
- When \(p \) processes are used, each process is responsible for at most \(\lceil n/p \rceil \) rows of \(A \)
 - Computational complexity (without communication) per process: \(O(n^2/p) \)
 - An efficient all-gather asks each process to send \(\lceil \log_2 p \rceil \) messages
 - total number of elements sent per process is \(n(p - 1)/p \)
 - hence, communication complexity is \(O(n + \log_2 p) \)
- Overall complexity: \(O(n^2/p + n + \log_2 p) \)
Replicating a block-mapped vector

After each process finishes its computational part, it has calculated a block of vector c

Next objective: use communication to let each process replicate the entire c vector

First, each process needs to allocate memory for the entire c vector

Second, the processes must concatenate their pieces of c into a complete vector c

Useful MPI command:

```c
int MPI_Allgatherv(void *sendbuf,
                   int sendcount, MPI_Datatype sendtype,
                   void *recvbuf, int *recvcounts, int *displs,
                   MPI_Datatype recvtype, MPI_Comm comm)
```
Example of MPI_Allgatherv

Process 0

send_buffer

<table>
<thead>
<tr>
<th>c o n</th>
</tr>
</thead>
</table>

send_cnt = 3

receive_cnt

| 3 4 4 |

receive_disp

| 0 3 7 |

⇒

receive_buffer

| c o n c a t e n a t e |

Process 1

send_buffer

| c a t e |

send_cnt = 4

receive_cnt

| 3 4 4 |

receive_disp

| 0 3 7 |

⇒

receive_buffer

| c o n c a t e n a t e |

Process 2

send_buffer

| n a t e |

send_cnt = 4

receive_cnt

| 3 4 4 |

receive_disp

| 0 3 7 |

⇒

receive_buffer

| c o n c a t e n a t e |

Matrix-vector multiplication – p. 14
Columnwise block-striped decomposition

- Each primitive gets a single column of matrix A
- Each primitive gets a single value of vector b
- Task i first multiplies column i of A with value b_i
 - outcome: a vector of partial results
- Then, all tasks communicate with each other:
 - every partial result element j on task i is transferred to task j
 - MPI all_to_all communication
- Finally, each task sums up the incoming values
Complexity analysis

- Agglomeration ⇒ a group of contiguous columns to a process
 - Each process is responsible for at most \([n/p]\) columns of \(A\)
 - Each process is assigned with at most \([n/p]\) values of \(b\)
 - When done, each process has at most \([m/p]\) values of \(c\)

- We assume \(m = n\)

- Complexity of initial local multiplication: \(\mathcal{O}(n^2/p)\)

- Complexity of final local sum: \(\mathcal{O}(n)\)

- Complexity of the all-to-all communication:
 - Option 1: \([\log_2 p]\) substeps
 - during each substep, a process sends \(n/2\) values and receives \(n/2\) values
 - complexity as \(\mathcal{O}(n \log p)\)
 - Option 2: each process sends a message to all the \(p - 1\) processes
 - complexity as \(\mathcal{O}(n + p)\)

- Overall complexity: \(\mathcal{O}(n^2/p + n \log p)\) or \(\mathcal{O}(n^2/p + n + p)\)
int MPI_Alltoallv(void *sendbuf,
 int *sendcnts, int *sdispls,
 MPI_Datatype sendtype,
 void *recvbuf,
 int *recvcnts, int *rdispls,
 MPI_Datatype recvtype,
 MPI_Comm comm)

Every process exchanges values with every other process in a communicator
Checkerboard block decomposition

- Each primitive task: a single element of matrix A
- The task responsible for $a_{i,j}$ multiplies it by value b_j, which yields value $d_{i,j}$
- Each element c_i of the result vector can be calculated as
 $$c_i = \sum_{j=0}^{n-1} d_{i,j}$$
 Communication is thus needed
- Agglomeration \Rightarrow a rectangular block of A to each process
Three principal steps

- A 2D task grid: each process is assigned with $A_{i,j}$, which is a block of A
- Suppose vector b is initially distributed to the first column of the task grid
- Step 1: redistribute b such that each process gets a suitable subvector b_j
- Step 2: multiply $A_{i,j}$ with b_j on each process
- Step 3: each row of the task grid performs a sum-reduction
Redistribution of b

- Suppose the 2D task grid is of dimension $k \times l$
- Initially, vector b is evenly distributed among the k processes in the first column of the task grid
- Objective: vector b should be redistributed among the l tasks in each row of the task grid
 - If $k = l$, one-to-one communication plus broadcast
 - If $k \neq l$, gather, scatter, broadcast
- Need to create MPI communicators that encompass all processes on the same row/column of the task grid
Complexity analysis

Assume $m = n$, and p is a square number.

Each process is responsible for a matrix block of size at most $\left\lceil \frac{n}{\sqrt{p}} \right\rceil \times \left\lceil \frac{n}{\sqrt{p}} \right\rceil$

- hence, the local matrix-vector multiplication has complexity $\mathcal{O}(n^2/p)$

Complexity of redistribution of vector b

- each process in the first column of the task grid sends its portion of b to the process in the first row \Rightarrow complexity: $\mathcal{O}(n/\sqrt{p})$

- each process in the first row of the task grid broadcasts its portion of b to the other processes in the same column \Rightarrow complexity: $\mathcal{O}(n \log_2 p / \sqrt{p})$

Complexity of the final reduction-sum: $\mathcal{O}(n \log_2 p / \sqrt{p})$
Exercise

Implement the checkerboard version of the parallel matrix-vector multiplication