INF3580 – Semantic Technologies – Spring 2011 Lecture 5: Mathematical Foundations

Martin Giese

22nd February 2011

Outline

1 Basic Set Algebra

2 Pairs and Relations

3 Propositional Logic

Today's Plan

- Basic Set Algebra
- Pairs and Relations
- 3 Propositional Logic

INF3580 :: Spring 2011

Lecture 5 :: 22nd February

2 / 40

Basic Set Algebra

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions
- RDF has a mathematically defined semantics

Basic Set Algebra

Sets: Cantor's Definition

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

Translated:

A "set" is any collection M of definite, distinguishable objects m of our intuition or intellect (called the "elements" of M) to be conceived as a whole.

• There are some problems with this, but it's good enough for us!

INF3580 :: Spring 201:

Lecture 5 :: 22nd February

5 / 40

Basic Set Algebra

Elements, Set Equality

• Notation for finite sets:

$$\{\mathsf{`a'}, \mathsf{1}, \triangle\}$$

- Contains 'a', 1, and \triangle , and nothing else.
- There is no order between elements

$$\{1,\triangle\}=\{\triangle,1\}$$

• Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

- The *notation* $\{\cdots\}$ allows to write things several times! \Rightarrow different ways of writing the same thing!
- We use \in to say that something is element of a set:

$$1 \in \{ \texttt{`a'}, 1, \triangle \}$$
 $\texttt{`b'} \not \in \{ \texttt{`a'}, 1, \triangle \}$

Basic Set Algebr

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- There is no order between elements
- Nothing can be in a set several times
- To sets A and B are equal if they contain the same elements
 - everything that is in A is also in B
 - everything that is in B is also in A

NF3580 :: Spring 2011

Lecture 5 :: 22nd February

6 / 10

Basic Set Algebra

Set Examples

- $\{3,7,12\}$: a set of numbers
 - $3 \in \{3,7,12\}, 0 \notin \{3,7,12\}$
- {0}: a set with only one element
 - $0 \in \{0\}, 1 \notin \{0\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - $\bullet \ \ `y' \in \{`a', `b', \dots, `z'\}, \ `æ' \not \in \{`a', `b', \dots, `z'\},$
- The set P_{3580} of people in the lecture room right now
 - Martin $\in P_{3580}$, Albert Einstein $\notin P_{3580}$.
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - 3580 $\in \mathbb{N}$, $\pi \notin \mathbb{N}$.
- \bullet $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$: the set of all prime numbers
 - $\bullet \ 257 \in \mathbb{P} \text{, } 91 \not \in \mathbb{P}.$

ecture 5 ·· 22nd February

Basic Set Algebra

Know Your Elements!

• Sets with different elements are different:

$$\{1,2\} \neq \{2,3\}$$

What about

$$\{a, b\}$$
 and $\{b, c\}$?

• If a, b, c are variables, maybe

$$a = 1, b = 2, c = 1$$

Then

$${a,b} = {1,2} = {2,1} = {b,c}$$

• $\{1,2,3\}$ has 3 elements, what about $\{a,b,c\}$?

NF3580 :: Spring 2011

Lecture 5 :: 22nd February

9/4

Basic Set Algebra

The Empty Set

- Sometimes, you need a set that has no elements.
- This is called the *empty set*
- Notation: ∅ or {}
- $x \notin \emptyset$, whatever x is!

Basic Set Algebi

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Martin is a human being".
- In mathematics, $m \in H$, where
 - H is the set of all human beings
 - *m* is Martin
- One could define Prime(n), Human(m), etc. but that is not usual
- Instead of writing "x has property XYZ" or "XYZ(x)",
 - let P be the set of all objects with property XYZ
 - write $x \in P$.

INF3580 :: Spring 2011

Lecture 5 :: 22nd February

10 / 4

Basic Set Algebra

Subsets

- \bullet Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

$$A \subseteq B$$

- Examples
 - $\{1\} \subseteq \{1, 'a', \triangle\}$
 - {1,3} ⊈ {1,2}
 - \bullet $\mathbb{P} \subseteq \mathbb{N}$
 - $\emptyset \subseteq A$ for any set A
- A = B if and only if $A \subseteq B$ and $B \subseteq A$

VF3580 :: Spring 2011 Lecture 5 :: 22nd February 11 /

INF3580 ·· Spring 2011

ture 5 :: 22nd February

Basic Set Algebra

Set Union

- The union of A and B contains
 - all elements of A
 - all elements of B
 - also those in both A and B
 - and nothing more.

$$A \cup B$$

- (A cup which you pour everything into)
- Examples
 - $\{1,2\} \cup \{2,3\} = \{1,2,3\}$
 - $\{1,3,5,7,9,\ldots\} \cup \{2,4,6,8,10,\ldots\} = \mathbb{N}$
 - $\emptyset \cup \{1,2\} = \{1,2\}$

INF3580 :: Spring 201

Lecture 5 :: 22nd Februa

Basic Set Algebra

13 / /

В

Set Difference

- The set difference of A and B contains
 - those elements of A
 - ullet that are *not* in B
 - and nothing more.

It is written

$$A \setminus B$$

- Examples
 - $\{1,2\} \setminus \{2,3\} = \{1\}$
 - $\mathbb{N} \setminus \mathbb{P} = \{1, 4, 6, 8, 9, 10, 12, \ldots\}$
 - $\emptyset \setminus \{1,2\} = \emptyset$
 - $\{1,2\} \setminus \emptyset = \{1,2\}$

- The *intersection* of A and B contains
 - those elements of A
 - that are also in B
 - and nothing more.

It is written

- Examples
 - $\{1,2\} \cap \{2,3\} = \{2\}$
 - $\mathbb{P} \cap \{2,4,6,8,10,\ldots\} = \{2\}$
 - $\emptyset \cap \{1, 2\} = \emptyset$

 $A \cap B$

INF3580 :: Spring 201

Lecture 5 :: 22nd Februa

14 / 40

Basic Set Algebra

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and "..." is too vague
- Special notation:

$$\{x \in A \mid x \text{ has some property}\}$$

- The set of those elements of A which have the property.
- Examples:
 - $\{n \in \mathbb{N} \mid n = 2k \text{ for some } k\}$: the even numbers
 - $\{n \in \mathbb{N} \mid n < 5\} = \{1, 2, 3, 4\}$
 - $\{x \in A \mid x \notin B\} = A \setminus B$

 $A \setminus B$

Pairs and Relation

Outline

1 Basic Set Algebra

2 Pairs and Relations

3 Propositional Logic

NF3580 :: Spring 201

Lecture 5 :: 22nd February

17 / 40

Pairs and Relation

Motivation

- RDF is all about
 - Resources (objects)
 - Their properties (rdf:type)
 - Their relations amongst each other
- Sets are good to group objects with some properties!
- How do we talk about relations between objects?

INE3580 · Spring 201

Lecture 5 :: 22nd February

Pairs and Relations

Pairs

- A pair is an *ordered* collection of two objects
- Written

$$\langle x, y \rangle$$

• Equal if components are equal:

$$\langle a,b\rangle=\langle x,y\rangle$$
 if and only if $a=x$ and $b=y$

Order matters:

$$\langle 1, \mathsf{'a'} \rangle \neq \langle \mathsf{'a'}, 1 \rangle$$

• An object can be twice in a pair:

$$\langle 1, 1 \rangle$$

• $\langle x, y \rangle$ is a pair, no matter if x = y or not.

Pairs and Relations

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the *cross product* of A and B, written

$$A \times B$$

- Example:
 - $A = \{1, 2, 3\}, B = \{\text{`a'}, \text{`b'}\}.$
 - $A \times B = \{ \langle 1, 'a' \rangle, \langle 2, 'a' \rangle, \langle 3, 'a' \rangle, \langle 1, 'b' \rangle, \langle 2, 'b' \rangle, \langle 3, 'b' \rangle \}$
- Why bother?
- Instead of " $\langle a,b\rangle$ is a pair of a natural number and a person in this room"...
- ... $\langle a, b \rangle \in \mathbb{N} \times P_{3580}$
- But most of all, there are subsets of cross products...

NF3580 :: Spring 2011

Lecture 5 ·· 22nd February

$$R \subseteq A \times B$$

• We often write aRb to say that $\langle a, b \rangle \in R$

• Example:

• Let $L = \{ \text{`a'}, \text{`b'}, \dots, \text{`z'} \}$

• Let ▷ relate each number between 1 and 26 to the corresponding letter in the alphabet:

• Then $\triangleright \subseteq \mathbb{N} \times L$:

$$\triangleright = \{ \langle 1, \mathsf{`a'} \rangle, \langle 2, \mathsf{`b'} \rangle, \dots, \langle 26, \mathsf{`z'} \rangle \}$$

And we can write:

$$\langle 1, \text{`a'} \rangle \in \, \triangleright \qquad \langle 2, \text{`b'} \rangle \in \, \triangleright \qquad \ldots \quad \langle 26, \text{`z'} \rangle \in \, \triangleright$$

NF3580 :: Spring 2011

Lecture 5 :: 22nd Februar

21 / 40

Pairs and Relations

Family Relations

- Consider the set $S = \{\text{Homer, Marge, Bart, Lisa, Maggie}\}.$
- Define a relation P on S such that

$$x P y$$
 iff x is parent of y

For instance:

Homer P Bart Marge P Maggie

• As a set of pairs:

$$\begin{array}{ll} \textit{P} = \; \{ & \langle \mathsf{Homer}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \,, \\ & \langle \mathsf{Marge}, \mathsf{Bart} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Lisa} \rangle \,, & \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \, \, \, \} \subseteq \textit{S}^2 \end{array}$$

For instance:

$$\langle \mathsf{Homer}, \mathsf{Bart} \rangle \in P \qquad \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \in P$$

Pairs and Relation

More Relations

• A relation R on some set A is a relation from A to A:

$$R \subseteq A \times A = A^2$$

• Example: <

• Consider the < order on natural numbers:

• $< \subseteq \mathbb{N} \times \mathbb{N}$:

NF3580 :: Spring 2011

Lecture 5 :: 22nd February

22 / 40

Pairs and Relations

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.

- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.
 - E.g. "=" in mathematics, friendship in facebook, etc.
- $R \subseteq A^2$ is transitive
 - If xRy and yRz, then xRz
 - \bullet E.g. "=", " \le ", "<" in mathematics, "is ancestor of", etc.

Outline

1 Basic Set Algebra

2 Pairs and Relations

Propositional Logic

NF3580 :: Spring 201

Lecture 5 :: 22nd February

25 / 40

Propositional Logic

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas, then
 - $(A \wedge B)$ is also a formula (read: "A and B")
 - $(A \lor B)$ is also a formula (read: "A or B")
 - $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples for formulae:

$$p \quad (p \wedge \neg r) \quad (q \wedge q) \quad (q \wedge \neg q) \quad ((p \vee \neg q) \wedge (\neg p \wedge q))$$

• Examples for non-formulas:

$$pqr p \neg q \land (p$$

Propositional Log

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
 - talks about sets and relations
- Basic concepts can be explained using predicate logic

INF3580 :: Spring 201

Lecture 5 :: 22nd February

26 / 4

Propositional Lo

Propositional Formulas, Using Sets

- Definition using sets:
- ullet The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \wedge B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $\bullet \neg A \in \phi$
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.

Propositional Logic

Truth

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether p and q are true!
- If p is true, and q is true, then $p \wedge q$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context
- Let's formalize this context, a.k.a. interpretation

INF3580 :: Spring 2011

Lecture 5 :: 22nd February

20 / 40

D 22 11 1

Semantic Validity |=

ullet To say that p is true in \mathcal{I} , write

$$\mathcal{I} \models p$$

For instance

 $\mathcal{I}_1 \models p$ $\mathcal{I}_2 \not\models p$

• In other words, for all letters p:

 $\mathcal{I} \models p$ if and only if $p \in \mathcal{I}$

Interpretations

- Idea: put all letters that are "true" into a set!
- ullet Define: An interpretation ${\mathcal I}$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.

• But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.

NF3580 :: Spring 2011

ecture 5 :: 22nd February

30 / 40

Propositional Lo

Validity of Compound Formulas

- So, is $(p \land q)$ true?
- ullet That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I} , is $(p \land q)$ true?
- ullet Yes, if $\mathcal{I}\models p$ and $\mathcal{I}\models q$
- No, otherwise
- For instance

 $\mathcal{I}_1 \models p \wedge q \qquad \mathcal{I}_2 \not\models p \wedge q$

Validity of Compound Formulas, cont.

- ullet That was easy, p and q are only letters...
- ... so, is $((q \wedge r) \wedge (p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B,...
- ullet ...and any interpretation \mathcal{I},\ldots
- ... $\mathcal{I} \models A \land B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
- For instance

$$\mathcal{I}_1
ot\models ((q\wedge r)\wedge (p\wedge q))$$
 $\mathcal{I}_1
ot\models (q\wedge r)$
 $\mathcal{I}_1\models (p\wedge q)$
 $\mathcal{I}_1\models q$
 $\mathcal{I}_1
ot\models r$
 $\mathcal{I}_1\models p$
 $\mathcal{I}_1\models q$

NF3580 :: Spring 2011

Lecture 5 :: 22nd February

33 / 10

Propositional Logic

Some Formulas Are Truer Than Others

- Is $(p \lor \neg p)$ true?
- Only two interesting interpretations:

$$\mathcal{I}_1 = \emptyset$$

$$\mathcal{I}_2 = \{p\}$$

Recursive Evaluation:

• $(p \lor \neg p)$ is true in *all* interpretations!

Propositional Log

Semantics for \neg and \lor

- The complete definition of \models is as follows:
- For any interpretation \mathcal{I} , letter p, formulas A, B:
 - $\mathcal{I} \models p \text{ iff } p \in \mathcal{I}$
 - $\mathcal{I} \models \neg A \text{ iff } \mathcal{I} \not\models A$
 - $\mathcal{I} \models (A \land B)$ iff $\mathcal{I} \models A$ and $\mathcal{I} \models B$
 - $\mathcal{I} \models (A \lor B)$ iff $\mathcal{I} \models A$ or $\mathcal{I} \models B$ (or both)
- Semantics of \neg , \wedge , \vee often given as *truth table*:

Α	В	$\neg A$	$A \wedge B$	$A \vee B$
f	f	t	f	f
f	t	t	f	t
t	f	f	f	t
t	t	f	t	t

INF3580 :: Spring 2011

Lecture 5 :: 22nd February

3/ //

Propositional I

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

 $\models A$

- $(p \lor \neg p)$ is a tautology
- True whatever *p* means:
 - The sky is blue or the sky is not blue.
 - Petter N. will win the race or Peter N. will not win the race.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!

Checking Tautologies

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

р	q	$\neg p$	$\neg q$	$(p \land q)$	$(\neg q \lor (p \land q))$	$(\neg p \lor (\neg q \lor (p \land q)))$
f	f	t	t	f	t	t
f	t f	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

• Therefore: $(\neg p \lor (\neg q \lor (p \land q)))$ is a tautology!

NF3580 :: Spring 2011

Lecture 5 :: 22nd February

37 / 40

Propositional Logic

Checking Entailment

• SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (\neg A \lor B)$

• We can check simple cases with a truth table:

$$(p \wedge \neg q) \models \neg (\neg p \vee q)$$
 ?

р	q	$\neg p$	$\neg q$	$(p \land \neg q)$	$(\neg p \lor q)$	$\neg(\neg p \lor q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

- So $(p \land \neg q) \models \neg(\neg p \lor q)$
- And $\neg(\neg p \lor q) \models (p \land \neg q)$

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$\mathcal{I} \models B$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \land q \models p$$

- Independent of meaning of p and q:
 - If it rains and the sky is blue, then it rains
 - If P.N. wins the race and the world ends, then P.N. wins the race
 - It 'tis brillig and the slythy toves do gyre, then 'tis brillig

INF3580 :: Spring 2011

Lecture 5 :: 22nd February

38 / 1

Propositional Lo

Recap

- Sets
 - $\bullet\,$ are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - \bullet can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can be (any combination of) symmetric, reflexive, transitive
- Predicate Logic
 - has formulas built from letters, ∧, ∨, ¬ (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters
 - \bullet recursive definition for semantics of \land, \lor, \lnot
 - $\models A$ if $\mathcal{I} \models A$ for all \mathcal{I} (tautology)
 - $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)
 - truth tables can be used for checking