DYNAMIC PROGRAMMING

Dynamic programming is a design strategy that involves dynamically construct-
ing a solution S to a given problem using solutions S, S,, ... , S, to smaller (or
simpler) instances of the problem. The solution S; to a given smaller problem in-
stance is itself built from the solutions to even smaller (or simpler) problem
instances, and so forth. We start with the known solutions to the smallest (sim-
plest) problem instances and build from there in a bottom-up fashion. To be able
to reconstruct S from S, S,, ..., S,,, we usually require some additional informa-
tion. We let Combine denote the function that combines S, S,, ..., S, using the
additional information to obtain S, so that

n’

S = Combine(S,, S5, ..., S,,)-

Dynamic programming is similar to divide-and-conquer in the sense that it
is based on a recursive division of a problem instance into smaller or simpler
problem instances. However, whereas divide-and-conquer algorithms often use
a top-down resolution method, dynamic programming algorithms invariably
proceed by solving all the simplest problem instances before combining them
into more complicated problem instances in a bottom-up fashion. Further,

265

266 M PART ll: Major Design Strategies

DEFINITION 9.1.1

unlike many instances of divide-and-conquer, dynamic programming algo-
rithms typically do not recalculate the solution to a given problem instance. Dy-
namic programming algorithms for optimization problems also can avoid
generating suboptimal problem instances when the Principle of Optimality holds,
thereby leading to increased efficiency.

Optimization Problems and the Principle of Optimality

The method of dynamic programming is most effective in solving optimization
problems when the Principle of Optimality holds. Consider the set of all feasible
solutions to an optimization problem; that is, all the solutions satisfying the con-
straints of the problem. An optimal solution S is a solution that optimizes (mini-
mizes or maximizes) the objective function. If we wish to obtain an optimal
solution S to the given problem instance, then we must optimize (minimize or
maximize) over all solutions S|, S,, ... , S, such that S = Combine(S,, S, ... , S,,).
For many problems, it is computationally infeasible to examine all feasible solu-
tions because exponentially many possibilities exist. Fortunately, we can drasti-
cally reduce the number of problem instances that we need to consider if the
Principle of Optimality holds.

()
K

Given an optimization problem and an associated function Combine, the Principle
of Optimality holds if the following is always true: If S = Combine(S,, S,, ..., S,,) and
S is an optimal solution to the problem instance, then Sy Sy e n S, are optimal
solutions to their associated problem instances.

The efficiency of dynamic programming solutions based on a recurrence relation express-
ing the principle of optimality results from (1) the bottom-up resolution of the recurrence,
thereby eliminating redundant recalculations, and (2) eliminating suboptimal solutions to
subproblems as we build up optimal solutions to larger problems; that is, we use only opti-
mal solution “building blocks” in constructing our optimal solution.

We first illustrate the Principle of Optimality for the problem of finding
a parenthesization of a matrix product of matrices M, ... , M, _, that minimizes
the total number of (scalar) multiplications over all possible parenthesizations. If
(My - M) (M, , |~ M, _,)is the “first-cut” set of parentheses (and the last prod-
uct performed), then the matrix products M, --- M, and M, _ | --- M, _, must both
be parenthesized in such a way as to minimize the number of multiplications re-
quired to carry out the respective products. As a second example, consider the

CHAPTER 9: Dynamic Programming B 267

problem of finding optimal binary search trees for a set of distinct keys. Recall
that a binary search tree T for keys K, < --- < K, _, is a binary tree on n nodes,
each containing a key such that the following property is satisfied: Given any
node v in the tree, each key in the left subtree rooted at v is no larger than the
key in v, and each key in the right subtree rooted at v is no smaller than the key
in v (see Figure 4.17). If K, is the key in the root, then the left subtree L of the
root contains K, ..., K; _ |, and the right subtree R of the root contains X, , |, ...,
K, _,. Given a binary search tree T for keys K, ... , K, _ |, let K. denote the key
associated with the root of T, and let L and R denote the left and right subtrees
(of the root) of T, respectively. Again, it follows that L (solution S,) is a binary
search tree for keys K, ..., K; _ |, and R (solution S,) is a binary search tree for
keys K, , ,, ..., K, _,. Given L and R, the function Combine(L,R) merely recon-
structs the tree T using K, as the root. In the next section, we show that the Prin-
ciple of Optimality holds for this problem by showing that if T is an optimal
binary search tree, then so are L and R.

i“.g 9.2 Optimal Parenthesization for Computing a
Chained Matrix Product

Our first example of dynamic programming is an algorithm for the problem
of parenthesizing a chained matrix product so as to minimize the number of
multiplications performed when computing the product. When solving this
problem, we will assume the straightforward method of matrix multiplication.
If A and B are matrices of dimensions p X g and g X r, then the matrix product
AB involves pgr multiplications. Given a sequence (or chain) of matrices
Mg, M,, ..., M, _ |, consider the product M M, --- M, _ ,, where the matrix M, has
dimensiond, X d,_ ,, i =0, ..., n, for a suitable sequence of positive integers 4,
d,,...,d, Because a matrix product is an associative operation, we can evalu-
ate the chained product in one of many ways, depending on how we choose to
parenthesize the expression. It turns out that the manner in which the
expression is parenthesized can make a major difference in the total number of
multiplications performed when computing the chained product. In this
section, we consider the problem of finding an optimal parenthesization—that is,
a parenthesization that minimizes the total number of multiplications per-
formed using ordinary matrix products.

We illustrate the problem with an example that commonly occurs in multi-
variate calculus. Suppose A and B are n X n matrices, X is an n X 1 column vec-
tor, and we wish to evaluate ABX. The product ABX can be parenthesized in two
ways, (AB)X and A(BX), resulting in 7> + »? and 2n? multiplications, respectively.
Thus, the two ways of parenthesizing make a rather dramatic difference in the
number of multiplications performed; that is, order ©(n?) versus order ©(n?).

268 M PART Il: Major Design Strategies

DEFINITION 9.2.1

FIGURE 9.1

Number of
multiplications
performed for each full
parenthesization
shown for matrices M,,,
M,, M,, and M, having
dimensions 20 X 10,
10 X 50, 50 X 5, and
5 X 30, respectively.
The optimal
parenthesizations are
shaded.

The following is a formal, recursive definition of a fully parenthesized
chained matrix product and its associated first cut.

Given the sequence of matrices My, M, ... \M, _ |, Pis a fully parenthesized matrix
product of My, M|, ... , M, _ (which, for convenience, we simply call a parenthe-

sization of MM, -+ M, _) if P satisfies

P=M, n=l1,
P= (Plpz)v n>1,

where for some k, P, and P, are parenthesizations of the matrix products
MM, M, and M, , \M, ,, M, _,, respectively. We call P, and P, the left and
right parenthesizations of P, respectively. We call the index k the first-cut index

of P.

The table in Figure 9.1 shows all the parenthesizations of the matrices M,
M,, M,, and M, having dimensions 20 X 10, 10 X 50, 50 X 5, and 5 X 30, re-
spectively, with the optimal parenthesizations highlighted.

There is one-to-one correspondence between parenthesizations of
MM, - M, _ | and 2-trees having n leaf nodes. Given a parenthesization P
of MM, - M, _, if n = 1, its associated 2-tree T(P) consists of a single node cor-
responding to the matrix M,; otherwise, T(P) has left subtree T(P,) and right
subtree T(P,), where P, and P, are the left and right parenthesizations of P. The
2-tree T(P) is the expression tree for P (see Figure 9.2).

no. no. no. no.
mult., mult. mult, mult.
M, (M,M,) 10000 (M,(M,M,)) 3500 (M, (M, (M,M,))) 28500

((M;M,)M,) 15000 (M,((M,M,)M,)) 10000
(MM,)(M,M,)) 47500
((My(M,M,))M,) 6500

(({MyM,)M,)M,) 18000

FIGURE 9.2

Associated
expression 2-tree
for parenthesization
((MyM XM, M)
(M4Mg). The Jabel
(7, j) inside each
node indicates
that the matrix
product associated
with the node
involves matrices

CHAPTER 9: Dynamic Programming B 269

Thus, the number of parenthesizations p, equals the number ¢, of 2-trees
having n leaf nodes, so that by Exercise 4.14 we have

1/2n — 2 4n-1 4"
Pn =" =——€()) (9.2.1)

n\n—-1/) 2n*—n

Hence, a brute-force algorithm that examines all possible parenthesizations is
computationally infeasible.

We are led to consider a dynamic programming solution to our problem by
noting that the Principle of Optimality holds for optimal parenthesizing. Indeed,
if we consider any optimal parenthesization P for MM, - M,, _ ,, clearly both the
left and right parenthesizations P, and P, of P must be optimal for P to be
optimal.

For0=i=sj=n-—1,let m; denote the number of multiplications performed
using an optimal parenthesization of MM, , | - M. By the Principle of Optimal-
ity, we have the following recurrence for m; based on making an optimal choice
for the first-cut index:

mU = mkin{m,-k + mk+1_j + did/(+ldj+l:0 =i k<JS n— 1} (922)
init. cond. m; = 0,i=0,...,n — 1.

The value m, , _, corresponds to the minimum number of multiplications

performed when computing MM, --- M, _ . We could base a divide-and-

n
conquer algorithm ParenthesizeRec directly on a top-down implementation of

.the recurrence relation (9.2.2). Unfortunately, a great many recalculations are

performed by ParenthesizeRec, and it ends up doing Q(3"”) multiplications

270 M PART II: Major Design Strategies

FIGURE 9.3

Table showing
values m;,
O0=si=sj=3,
computed diagonal
by diagonal from
g=0tog=3
using the bottom-
up resolution of
(9.2.2) for matrices
My, M,, M,, and M,
having dimensions
20 X 10, 10 x 50,
50 X 5, and

5 X 30, respectively.
The values of G

are shown
underneath each
m;, O=sisj=3.

to compute the minimum number m, _, corresponding to an optimal
parenthesization.

A straightforward dynamic programming algorithm proceeds by computing
the values m;, 0 = i=j=n—1,in a bottom-up fashion using (9.2.2), thereby
avoiding recalculations. Note that the values mg, 0= i=j=n-1,occupy the
upper-right triangular portion of an n X n table. Our bottom-up resolution pro-
ceeds throughout the upper-right triangular portion diagonal by diagonal, start-
ing from the bottom diagonal consisting of the elements m; = 0,i =0, ..., n — 1.
The ¢'" diagonal consists of the elements M ;vpq=0,..,n— 1 Figure 9.3 il
lustrates the computation of m, for the example given in Figure 9.1. When com-
puting m, we also generate a table G of indices k, where the minimum in (9.2.2)
occurs; that is, ¢; is where the first cut in MM, . | - M; is made in an optimal
parenthesization. The values ¢; can then be used to actually compute the matrix
product according to the optimal parenthesization.

The following procedure, OptimalParenthesization, accepts as input the dimen-
sion sequence d[0:n], where matrix M, has dimensiond, x d,, ,,1 =0, ...,n— L.
Procedure OptimalParenthesization outputs the matrix m[0:n — 1, 0:n — 1], where
mli,j] = My, 0 =i=j=n—1,isdefined by recurrence (9.2.2). OptimalParenthe-
sization also outputs the matrix FirstCut[0:n — 1, 0:n — 1], where FirstCut[i,j] = Cjp
0 =i =j=n— 1, whichis the first-cut index in an optimal parenthesization for

M, M,

-1

j 0 1 2 3
0 o0 10000 3500 6500
1 0 2500 4000
\ 1 \ 2 g=2
2 0 7500
\2 i=1
3 0
qg=20

CHAPTER 9: Dynamic Programming W 271

+»+ese2o2 procedure OptimalParenthesization(d[0:n], m[0:n — 1, 0:n — 1], FirstCut{O:n — 1,
: on - 1))
Input: d[0:n] (dimension sequence for matrices My, M,, ..., M, _)

Output: m[O:n — 1,0:n — 1] (M, j/] = number of multiplications performed in an
optimal parenthesization for computing M, - - - M,
O=si=sj=n-1)
FirstCut[O:n — 1,0:n — 1] (index of first cut in optimal parenthesization of
MM, 0=i=j=n-1)
fori«0Oton — 1do // initialize M[i, 1] to zero
mli,] « 0
endfor
fordiag « 1ton — 1 do
fori<Oton — 1 — diag do

© j« i+ diag // compute m; according to (9.2.2)
Min « mli + 1,j] + dli]xd]i + 1]=d[j + 1]
TempCut « i

fork«—i+ 1toj— 1do
Temp < m[i, k] + mlk + 1,/] + dii]xdk + 1]xd[j + 1]
if Temp < Min then
Min « Temp
TempCut « k
endif
endfor
mli,j] « Min
FirstCut[i, j] < TempCut
endfor
endfor
end OptimalParenthesization

ooooooooooooooooooooooo CUIUNDLSEANBIIICIINVVISSTTRIISIFIIINSIEITIIISSILITICCAUBIVISICITEDI S &

A simple loop counting shows that the complexity of OptimalParenthesization
is in O(n3).

It is now straightforward to write pseudocode for a recursive function
ChainMatrixProd for computing the chained matrix product M, --- M, _, using
an optimal parenthesization. We assume that the matrices M, ... , M, _ | and
the matrix FirstCut[0:n — 1, O:n — 1] are global variables to the procedure
ChainMatrixProd. The chained matrix product M --- M, _ , is computed by ini-
tially invoking the function ChainMatrixProd with i = 0 and j = n — 1. Chain-
MatrixProd invokes a function MatrixProd, which computes the matrix product
of two input matrices.

272 M PART Il: Major Design Strategies

aaaaaaa

*+ function ChainMatrixProd(i, j) recursive

Input: i,/ (indices delimiting matrix chain M,....M)
M,M, _, (global matrices)
FirstCut{O:n — 1, 0:n — 1] (global matrix computed by
OptimalParenthesization)
Output: M; - - M, (matrix chain)
ifj > i then
X « ChainMatrixProd(, FirstCut{i, /])
Y « ChainMatrixProd(FirstCutli,j] + 1,/)
return(MatrixProd(X, Y))
else
return(M)
endif
end ChainMatrixProd

TS FMNEL RSV oV NIV IISIVRDIOGTIRLIVDIIPIVIIOCIPHERIICIPIICIIIGIVIIBIIIIVERI 2030093006023 830088808

For the example given in Figure 9.1, invoking ChainMatrixProd with M, M,
M,, M, computes the chained matrix product MM, M, M, according to the paren-
thesization ((M,(M,M,))M,).

Optimal Binary Search Trees

We now use dynamic programming and the Principle of Optimality to generate
an algorithm for the problem of finding optimal binary search trees. Given a
search tree T and a search element X, the following recursive strategy finds any
occurrence of a key X. First, X is compared to the key K associated with the root.
If X is found there, we are done. If X is not found, and if X is less than K, then we
search the left subtree; otherwise, we search the right subtree.

Consider, for example, the binary search tree given in Figure 9.4 involving
the four keys “Ann,” “Joe,” “Pat,” and “Ray”. The internal nodes correspond to
the successful searches X = “Ann,” X = “Joe,” X = “Pat,” X= “Ray,” and the leaf
nodes correspond to the unsuccessful searches X < “Ann,” “Ann” < X < “Joe,”
“Joe” < X < “Pat,” “Pat” < X < “Ray,” “Ray” < X. Suppose, for example that
X = “Ann.” Then SearchBinSrchTree makes three comparisons, first comparing X
to “Pat,” then comparing X to “Joe,” and finally comparing X to “Ann.” Now sup-
pose that X = “Pete.” Then SearchBinSrchTree makes two comparisons, first com-
paring X to “Pat” and then comparing X to “Ray.” SearchBinSrchTree implicitly
branches to the left child of the node containing the key “Ray”—that is, to the
leaf (implicit node) corresponding to the interval “Pat” <X< “Ray.” Let py, p,»
p,, p, be the probability that X = “Ann,” X = “Joe,” X = “Pat,” X = “Ray,” re-
spectively, and let q,, 4, 4,, 95, 4,, denote the probability that X < “Ann,” “Ann”
< X < “Joe,” “Joe” < X < “Pat,” “Pat” < X < “Ray,” “Ray” < X, respectively.

FIGURE 9.4

Search tree with
leaf nodes drawn
representing
unsuccessful
searches.

CHAPTER 9: Dynamic Programming W 273

Joe Ray

AN
AV

Then, the average number of comparisons made by SearchBinSrchTree for the tree
T of Figure 9.4 is given by

3po + 2p, + py t 2p3 + 390 + 39, + 29, + 295 + 24,

Now consider a general binary search tree T whose internal nodes corre-

spond to a fixed set of n keys K, K|, ... , K, _, with associated probabilities
p = (py Py» ---» P, _), and whose n + 1 leaf (external) nodes correspond to the
n+ lintervals I X < K, [K< X<K,,...,I, K _,<X<K _,[.:X>
K, _, with associated probabilities q = (q,, 4, ... , 9,,).- (When implementing T,

the leaf nodes need not actually be included. However, when discussing the av-
erage behavior of SearchBinSrchTree, it is useful to include them.) We now derive
a formula for the average number of comparisons A(T, n, p, q) made by Search-
BinSrchTree. Let d, denote the depth of the internal node corresponding to K,
i=0,..,n— 1. Similarly, let ¢; denote the depth of the leaf node corresponding
to the interval I, i = 0, 1, ..., n. If X = K, then SearchBinSrchTree traverses the
path from the root to the internal node corresponding to K. Thus, it terminates
after performing 4, + 1 comparisons. On the other hand, if X lies in I, then
SearchBinSrchTree traverses the path from the root to the leaf node corresponding
to I, and terminates after performing e, comparisons. Thus, we have

n—1 n
A(T,n,p,q) = Epi(di +1) + qu'ei- (9.3.1)
i=0 i=0

We now consider the problem of determining an optimal binary search tree
T, optimal in the sense that T minimizes A(T, n, p, q) over all binary search trees
T. This problem is solved by a complete tree in the case where all the p,’s are
equal and all the g/s are equal. Here we use dynamic programming to solve the
problem for general probabilities p, and g,. In fact, we solve the slightly more gen-
eral problem, where we relax the condition that p, ..., p, _, and g, ... , g, are
probabilities by allowing them to be arbitrary nonnegative real numbers. One

274 MW PART ll: Major Design Strategies

could regard these numbers as frequencies, as we did when discussing Huffman
codes in Chapter 7. That is, we solve the problem

minimize A(T, n, p,q) (9.3.2)
T

over all binary search trees T of size n, where p,, ..., p,_, and q,, ... , g, are given
fixed nonnegative real numbers. For convenience, we sometimes refer to A(T, n,
p, q) as the cost of T. We define o (p, q) by

n-—1 n

o(p,q) = ;)p,- + Z‘sqf. (9.3.3)

Note that we have removed the probability constraint that o(p, q) = 1.

As with chained matrix products, we could obtain an optimal search tree by
enumerating all binary search trees on the given identifiers and choosing the one
with minimum A(T, », p, q). However, the number of different binary search
trees on # identifiers is the same as the number of binary trees on » nodes, which
is given by the n'" Catalan number

1 n
b, + (2”> € Q(%)
n+1l\n n

Thus, a brute-force algorithm for determining an optimal binary search tree
using simple enumeration is computationally infeasible. Fortunately, the Princi-
ple of Optimality holds for the optimal binary search tree problem, so we look for
a solution using dynamic programming.

Let K, denote the key associated with the root of 7, and let L and R denote
the left and right subtrees (of the root) of T, respectively. As we remarked earlier,
L is a binary search tree for the keys K, ..., K. _ |, and R is a binary search tree
for the keys K, . |, ... , K, _ . For convenience, let A(T) = A(T, n, p, q),
A(L) = A(L, i, Py -+ P; — 1»9g» - »4;), and A(R) = A(R,n =i = 1,p,, |, s Py_ s
4;+,» -4, Clearly, each node of T that is different from the root corresponds
to exactly one node in either L or R. Further, if N is a node in T corresponding to
anode N’ in L, then the depth of N in T is exactly one greater then the depth of
N’in L. A similar result holds if N corresponds to a node in R. Thus, it follows im-
mediately from Formula (9.3.1) that .

A(T) = A(L) + A(R) + o(p, q). (9.3.4)

CHAPTER 9: Dynamic Programming B 275

We now employ recurrence relation (9.3.4) to show that the Principle of
Optimality holds for the problem of finding an optimal search tree. Suppose
that T is an optimal search tree; that is, T minimizes A(T). We must show that
L and R are also optimal search trees. Suppose there exists a binary search tree
L’ with i — 1 nodes involving the keys K, ... , K; _, such that A(L") < A(L).
Clearly, the tree T’ obtained from T by replacing L with L’ is a binary search
tree. Further, it follows from Formula (9.3.4) that A(T’) < A(T), contradicting
the assumption that T is an optimal binary search tree. Hence, L is an optimal
binary search tree. By symmetry, R is also an optimal binary search tree, which
establishes that the Principle of Optimality holds for the optimal binary search
tree problem.

Because the Principle of Optimality holds, when constructing an optimal
search tree 7, we need only consider binary search trees L and R, both of which
are optimal. This observation, together with recurrence relation (9.3.4), is the
basis of the following dynamic programming algorithm for constructing an opti-
mal binary search tree. For ij € {0, ... ,n — 1}, we let T; denote an optimal search
tree involving the consecutive keys K, K. ..., K;, where T} is the null tree if

i+
i > j. Thus, if K, is the root key, then the left subtree Lis T; , _ |, and the right sub-

-1°

tree Ris T, , 1) (see Figure 9.5). Moreover, T =T, _ is an optimal search tree
j j+1
involving all n keys. For convenience, we define o (i, j) = El’k + DG
k=i k=i
FIGURE 9.5
Principle of
Optimality: If T is
optimal, then L and
R must be optimal;
thatis, L=T,, _,
andR=T,,,,
7y Ths1

Piveer Pt Pi+1 s Pj
G Gk Gi+1 o0 Div1

276 W PART Il: Major Design Strategies

We define A(T)) by

A(Tll) A(Ij7 -1+ 11 Pi» Pi+1s -+ 7pj’ Gis i+ 1>+ » qj+l)' (9'3°5)

Because the keys are sorted in nondecreasing order, it follows from the Principle
of Optimality and (9.3.4) that

A(Ty) = min{A(T; 1) + A(Te 1)} + 0 (i), (9.3.6)

where the minimum is taken overall ke {i,i + 1, ..., j}.
Recurrence relation (9.3.6) yields an algorithm for computing an optimal
search tree T. The algorithm begins by generating all single-node binary search

trees, which are trivially optimal. Namely, Ty, T\, ... , T, _, , - ,- Using (9.3.6),
the algorithm can then generate optimal search trees T, T\,, ... , T, _, ,,_ ;- In

general, at the k™ stage in the algorithm, recurrence relation (9.3.6) is applied to
construct the optimal search trees T, , _ ,T, 4, ..., T, _ , _ ;> using the previously
generated optimal search trees as building blocks. Figure 9.6 illustrates the algo-
rithm for a sample instance involving » = 4 keys. Note that there are two possi-
ble choices for T, in Figure 9.6, each having a minimum cost of 1.1. The tree

with the smaller root key was selected.

FIGURE 9.6

Action of algorithm
to find an optimal

binary search tree
using dynamic Too =@ Ty =® Ty, =@ Ty= @
programing.
....................................... A(Typ) = 25 A(T;)=.15 A(Ty)=.25 A(Ty))= .45

K‘ f = To = Q A(Ty)= .5
O © O

min {0+ .15 =.15, .25+ 0= .25} + .35=.5
=>T,= A(Typ) = .55

min {0 + .25

.25,.15+ 0 =.15} + .4 = .55 continued

CHAPTER 9: Dynamic Programming B 277

FIGURE 9.6
T, = A(T,;) = .9
Continued ! = » (T23)

min {0 + .45 = .45, .25 + 0 = .25} + .65=.9

-) ane
, . = T = A(T,) =1.1
OJOBNOIO © &
O 0

min {0 + .55 = .55, .25 + .25 =.5,.5 + 0 = .5} 6=1.1

Zb @/@\@Qf(ﬁ o A=

min {0 +.9=.9, .15+ .45=.6,.55+0 = .55} + .8 = 1.35

Fob

min {0 +1.35=1.35, .25+ .9=1.15,.5+.45=.951.1+0=1.1}+1=1.95

(2)
= Tp,=(0] (3) A(Ty;) = 1.95
O

The following pseudocode for the algorithm OptimalSearchTree implements
the preceding strategy. OptimalSearchTree computes the root, Root[i, j], of each
tree T, and the cost, A[i, j], of T;- An optimal binary search tree T for all the
keys (namely, o.n—1) can be easﬂy constructed using recursion from the two-
dimensional array Root[0:n — 1, 0:n — 1].

278 B PART Il: Major Design Strategies

mm@ -------- .+ procedure OptimalSearchTree(P[0:n — 1], Q[0:n], Root[O:n — 1,0:n — 1], A[0:n — 1,
. On = 1))
Input: P[0:n — 1] (an array of probabilities associated with successful searches)
Q[0:n] (an array of probabilities associated with unsuccessful searches)
Output: Root[0:n — 1, 0:n — 1] (Root[i, /] is the key of the root node of T))
AlO:n — 1,00 = 1] (A[1, /] is the cost A(T;) of)
fori«0Oton — 1do
Root[i, /] « i
Sigmali, i] « pli] + qli] + qli + 1]
Ali, 1 « Sigmali, 1]
endfor
for Pass «— 1ton — 1 do // Pass is one less than the size of the optimal
trees T, being constructed in the given pass.
fori«<Oton — 1 - Pass do
J <1+ Pass
//Compute o(p;, ... Pt Giv - Gar)
Sigmali, j] « Sigmali, j = 1] + p[j] + q[j+1]
Rootli, j] « i
Min « Ali + 1,/]
fork i+ 1tojdo
Sum « Ali, k — 1] + Ak + 1,/]
if Sum < Min then
Min « Sum
Root[i, j] « k
endif
endfor
Ali, j] « Min + Sigmali, j]
endfor
endfor
end OptimalSearchTree

.................................. BB 2QBBES 002N IVIATAITTONLAGIBIILEIIEBROLIGEININITIGCRAIBITUS IS

In Figure 9.7, we illustrate the action of OptimalSearchTree for the optimal
binary search tree just described. For convenience, we change all the probabil-
ities to frequencies, which, in the case we are considering, result by multiplying
each probability by 100 to change all the numbers to integers. As we have
remarked, working with frequencies instead of probabilities can always be
done. In fact, when we are constructing optimal subtrees, it is actually
frequencies that we are dealing with instead of ﬁrobabilities. The optimal
subtrees T,.j are built starting from the base case T, i = 0, 1, 2, 3. The figure
shows how the tables are built during each pass for A(T) = Ali, jl,

FIGURE 9.7

Building arrays

Ali, j1, Rootli, j],
Sigmali, j] from
inputs A0:3] =
(15,10,20,30)

and Q[0:4] =
(5,5,0,5,10) to
OptimalSearchTree.

CHAPTER 9: Dynamic Programming B 279

Root(T;) = Root[i, j], and Sigmali, j] = p, + -+ - + pitat-tag,, = Sigmali,
j— 1] tpit a4,

i 01 2 3 4
p, 15 10 20 30
2, 5 5 0 5 10

Ali, j] Root[i, j] Sigmalli, j]
i 0o 1 2 3 i 0 1 2 '

w
-
o
—
N
w

0 25 * * * O O * * * 0 25 * * *
1 15 * * 1 1 * 1 15 *
2 25 * 2 2 * 2 25 *
3 45 3 3 3 45
J 0 1 2 3 j 0 1 2 3 j 0 1 2 3
1 i i
0 25 50 * * 0 O * oo 0 25 35 * *
1 15 55 * 1 1 2 = 1 15 40 *
2 25 90 2 2 3 2 25 65
3 45 3 3 3 45
j 0 1 2 3 j 0 1 2 3 j 0 1 2 3
i i i
0 25 50 110 * 0 0 1 = 0 25 35 60 *
1 15 55 135 1 1 2 3 1 15 40 80
2 25 90 2 2 3 2 25 65
3 45 3 3 3 45
j 0 1 2 3 j 0 1 2 3 j 0 1 2 3
i I i
0 25 50 110 195 0 0 1 2 0 25 35 60 100
1 15 55 135 1 1 3 1 15 40 80
2 25 90 2 2 3 2 25 65
3 45 3 3 3 45

Because OptimalSearchTree does the same amount of work for any input
P[0:n — 1] and Q[0:#n], the best-case, worst-case, and average complexities are
equal. Clearly, the number of additions made in computing Sum has the same
order as the total number of additions made by OptimalSearchTree. Therefore, we
choose the addition made in computing Sum as the basic operation. Since Pass
varies from 1 to»n — 1, i varies from O ton — 1 — Pass, and k varies from 7 + 1 to

280 W

PART 1I: Major Design Strategies

i + Pass, it follows that the total number of additions made in computing Sum is
given by

n—1n—1-t i+t

1

ft=1 i=0 k=i+1l
n—1

= D (n— 1)t

~
< 0
T

1 n—1

=nyt— >P

t=1 t=1

n[(n - 1)3] - [(n -)n

(2n —1)
6

I

] € 0(n’).

Longest Common Subsequence -

In this section, we consider the problem of determining how close two character
strings are to one another. For example, a spell checker might compare a text
string created on a word processor with pattern strings from a stored dictionary.
If there is no exact match between the text string and any pattern string, then
the spell checker offers several alternative pattern strings that are fairly close, in
some sense, to the text string. As another example, a forensic scientist might
compare two DNA strings to measure how close they match.

We can measure the closeness of two strings in several ways. In Chapter 20,
we will consider one important measure called the edit distance, which is com-
monly used by search engines to find approximate matchings for a user-entered
text string for which an exact match cannot be found. The edit distance is also
used by spell checkers. Roughly speaking, the edit distance between two strings
is the minimum number of changes that need to be made (adding, deleting, or
changing characters) to transform one string to the other.

In this section, we consider another closeness measure, the longest common
subsequence (LCS) contained in a text string and a particular pattern string.
Computing either the LCS or the edit distance is an optimization problem that
satisfies the Principle of Optimality and can be solved using dynamic program-
ming. However, the solution to the LCS problem is easier to understand because
it has a simpler recurrence relation, which we now describe.

Suppose T = T,T, -~ T, _, is a text string that we want to compare to a pat-
tern string P = P, P, - P, _,, where we assume that the characters in each string
are drawn from some fixed alphabet A. A subsequence of T is a string of the form
T, T, - T;, where 0 =i, <i, < - <i =<n — 1. Note that a substring of T is a
special case of a subsequence of T in which the subscripts making up the subse-

CHAPTER 9: Dynamic Programming B 281

quence increase by one. For example, consider the pattern string “Cincinnati”
and the text string “Cincinatti” (a common misspelling). You can easily check
that the longest common subsequence of the pattern string and the text string
has length 9 (just one less than the common length of both strings), whereas it
takes two changes to transform the text string to the pattern string (so that the
edit distance between the two strings is two).

We now describe a dynamic programming algorithm to determine the
length of the longest common subsequence of T and P. For simplicity of notation,
we assume that the strings are stored in arrays T[0:n — 1] and P[0:m — 1], re-
spectively. For integers i and j, we define LCS[7, j] to be the length of the longest
common subsequence of the substrings T[0:i — 1] and P[0:j — 1] (so that LCS[n,
m] is the length of the longest common subsequence of T and P). For conve-
nience, we set LCS[i,j] = 0if i = 0 or j = 0 (corresponding to empty strings).
Note that LCS[1, 1] = 1 if T[0] = P[0]; otherwise, LCS[1, 1] = 0. This initial con-
dition is actually a special case of the following recurrence relation for LCS[7, j]:

LCS[i,j] =LCS[i—1,j— 11+ 1 ifT[i—1]=P[j—1]; (9.4.1)
otherwise, LCS[i, j] = max{LCS[i,j — 1], LCS[i — 1,/]}.

To verify recurrence relation (9.4.1), note first that if T[— 1] # P[j — 1],
then a longest common subsequence of T[0:/ — 1] and P[0:;j — 1] might end in
T[i — 1] or P[j — 1], but certainly not both. In other words, if T[i — 1] # P[j — 1],
then a longest common subsequence of 7[0:/ — 1] and P[0:j — 1] must be drawn
from either the pair T[0:/ — 2] and P[0:j — 1] or from the pair T[0:i — 1] and
P[0:;j — 2]. Moreover, such a longest common subsequence must be a longest
common subsequence of the pair of substrings from which it is drawn (that is,
the principle of optimality holds). This verifies that

LCS[i,j] = max{LCS[i,j — 1], LCS[i — 1,]} if T[i — 1] # P[j — 1].(9.4.2)

On the other hand, if T{i — 1] = P[j — 1] = C, then a longest common subse-
quence must end either at 7[{ — 1] in T[0:{ — 1] or at P[j — 1] in P[0, — 1], or
both,; otherwise, by adding the common value C to a given subsequence, we
would increase the length of the subsequence by 1. Also, if the last term of a
longest common subsequence ends at an index ¥ < i — 1 in T[0:i — 1] (so that
T[k] = C), then clearly we achieve an equivalent longest common subsequence by
swapping T[i — 1] for T[k] in the subsequence. By a similar argument involving
P[0:;j — 1], when T[i — 1] = P[j — 1], we can assume without loss of generality that
a longest common subsequence in T[0:i — 1] and P[0:j — 1] ends at T[i — 1] and
P[j — 1]. However, then removing these end points from the subsequence clearly

282 MW PART Il: Major Design Strategies

must result in a longest common subsequence in T[0:/ — 2] and P[0:j — 2], respec-
tively (that is, the principle of optimality again holds). It follows that

LCS[i,j1=LCS[i—1,j— 1]+ 1if T[i— 1] =P[j — 1], (9.4.3)

which, together with Formula (9.4.2), completes the verification of Formula
(9.4.1).

The following algorithm is the straightforward row-by-row computation of
the array LCS[0:n, 0:m] based on the recurrence (9.4.1).

e SRRLRTEE - procedure LongestCommonSubseq(T[0:n — 1), P[0:m — 1], LCS[0:n, O:m])
« nput: T[O:n — 1], P[O:m — 1] (strings)
: Output: LCS[O:n, O:m] (array such that LCSTi, j] is length of the longest common
. subsequence of T[07 — 1] and P[0 — 1])
fori< Otondo //initialize for boundary conditions
LCS[i, 0] « O
endfor
forj«< Otomdo //initialize for boundary conditions
LCS[0,)] « O
endfor
forie1tondo //compute the row index by i of LCS[O:n, O:m]
forj « 1 to m de// compute LCS[i, j] using (9.4.1)
if 7T/ — 1] = P[j — 1] then
LCS[i,j] « LCS[i = 1,/ = 1] + 1
else
LCS[i, j] « max(LCS[i,j — 1], LCS[i = 1,/])
endif
endfor
endfor
end LongestCommonSubseq

TSP P B RV OGS YA I AN ISR LIS PN TARRG I G AD I F PPN SISO PR ADSCIVERIBI IR ALIRNONIOIRIE BRI LR NS

Using the comparison of text characters as our basic operation, we see that
LongestCommonSubseq has complexity in O(nm), which is a rather dramatic im-
provement over the exponential complexity ®(2"m) brute-force algorithm that
would examine each of the 2" subsquences of T[0:n — 1] and determine the
longes: subsequence that also occurs in P[0:m — 1].

Figure 9.8 shows the array LCS[0:8, 0:11] output by LongestCommonSubseq for
T[0:7] = “usbeeune” and P[0:10] = “subsequence”.

Note that LongestCommonSubseq determines the length of the longest common
subsequence of T[0:n — 1] and P[0:m — 1] but does not output the actual subse-
quence itself. In the previous problem of finding the optimal paranthesization of a
chained matrix product, in addition to knowing the minimum number of multi-

FIGURE 9.8(a)

The matrix
LCS[0:8, 0:11]
for the strings

T[o:
“usbeeune"” and

7=

F0:10] =
“subsequence”,

with the path in
LCS generating the
longest common

string “sbeune”

using the move-left

rule.

CHAPTER 9: Dynamic Programming W 283

plications required, it was also important to determine the actual paranthesization
that did the job. Thus, we needed to compute the array FirstCut[O:n — 1,0:n — 1] to
be able to construct the optimal paranthesization. Similarly, in the optimal binary
search tree problem, in addition to knowing the average search complexity of the
optimal search tree, it was important to determine the optimal search tree itself.
Thus, we kept track of the key Root[i, j] in the root of the optimal binary search tree
containing the keys K; < --- < K, However, in the LCS problem, knowing the ac-
tual common subsequence is not as important as knowing its length. For example,
in a process like spell checking, the subsequence is not as important as its length.
Typically, to correct a misspelled word in the text, the spell checker displays a list of
pattern strings that share subsequences exceeding a threshold length (depending
on the length of the strings), as opposed to exhibiting common subsequences.
Nevertheless, it is interesting that a longest common subsequence can be deter-
mined just from the array LCS[0:n — 1, 0:m — 1] (and T[0:n — 1] and P[0O:m — 1])
without the need to maintain any additional information.

One way we can generate a longest common subsequence is to start at the
bottom-right corner (n, m) of the array LCS and work our way backward through
the array to build the subsequence in reverse order. The moves are dictated by
looking at how we get the value assigned to a given position when we used
(9.4.1) to build the array LCS. More precisely, if we are currently at position (i, j)
in LCS, and T[i — 1] = P[j — 1], then this common value is appended to the be-
ginning of the string already generated (starting with the null string), and we
move to position ({ — 1,j — 1) in LCS. On the other hand, if T[i — 1] # P[j — 1],
then we move to position (i — 1,j) or (i,j — 1), depending on whether LCS[i — 1,
7] is greater than LCS[7,j — 1]. When LCS[i — 1, j] is equal to LCS[i,j — 1], either
move can be made. In the latter case, the two different choices might not only
generate different longest common subsequences but also yield different longest
common strings corresponding to these subsequences. For example, Figure 9.8a

s u b s e q u € n c e

LCS 0 1 2 3 4 5 6 7 8 9 10 11

0 olo|lo|o|lo]o|loO|O]O|O]|]O]|O

u 1 o|lo |1 | 1| 1|1 |11 |1|1}|1]1

s 2 | o0 i 1 | 2| 2] 2[2]2]2]2] 2

b 3 01 1 2l 222222] 2

e 4 0|1 1 R 3 | 3| 3 (3|3]3] 3

e 5 0|1 1| 2| 2 3| 3| 4]|]4]| 4] 4

u 6 o1 22| 2]3]|?3 4 |4 | 4] 4

n 7 |lo|1|2]|2|2|3]|3]|]a]|34a 5|5
e 8 ol1 22 213| 3} 45 |95]|'

284 M PART Il: Major Design Strategies

FIGURE 9.8(b)

The path in the
matrix LCS
generating the

longest

common

string "useene”

using the

move-up rule.

9.5 Closing Remarks

s u b s e q u e n ¢ e

LCS 0 1 2 3 4 S5 6 7 8 9 10 11

o f[oJoJo[oJoJo[oJoJolofJo[o

u 1 [o]o Hﬁ TEE RN EEEEE

s 2 o1]1 [2 2222212

b 3 (o |1 |1]22]z22]z2]2121]21:2

e 4 o1 |1]2]2 33 [3][3]3]3

e s |o|1 |1 |2]2]3]3]3 4 | 4| 4

u 6 o1 |2]22]33]alala]alsa

n 7lolr 22233424 5 | s
e 8 [ofut[2]2]2[3]3]a]5]5]5 [N

shows the path generated using the move-left rule, which requires us to move to
position (i — 1,) when T[i — 1] # P[j — 1], whereas Figure 9.8b shows the path
resulting from always moving up to position (i, j — 1). The darker shaded posi-
tions (7, j) in these paths correspond to where T[i — 1] = P[j — 1]. These two
paths yield the longest common strings “sbeune” and “useune”, respectively.
When generating a path in LCS, we obtain a longest common subsequence when
we reach a position where LCS[i, j] = 0.

In subsequent chapters, we will use dynamic programming to solve a number of
important problems. For example, in Chapter 12, we will discuss Floyd's dy-
namic programming solution to the all-pairs shortest-path problem in weighted
directed graphs. In Chapter 20 we will use dynamic programming to solve the
edit distance version of the approximate string matching problem. Dynamic pro-
gramming, because it is based on a bottom-up resolution of recurrence relations,
is usually amenable to straightforward level-by-level parallelization. However,
this straightforward parallelization usually does not result in optimal speedup,
and more clever parallel algorithms, sometimes based on finding recurrences
better suited to parallelization, must be sought. We will see such an example in
Chapter 16 for computing shortest paths.

CHAPTER 9: Dynamic Programming W 285

References and Suggestions for Further Reading

Bellman, R. E. Dynamic Programming. Princeton, NJ: Princeton University Press,
1957. The first systematic study of dynamic programming.

Two other classic references on dynamic programming are:

Bellman, R. E., and S. E. Dreyfus. Applied Dynamic Programming. Princeton,
NJ: Princeton University Press, 1962.

Nembhauser, G. Introduction to Dynamic Programming. New York: Wiley, 1966.

Section 9.1 Optimization Problems and the Principle of Optimality

9.1 Suppose the matrix C[0:n — 1, 0:n — 1] contains the cost of C[i, j] of fly-
ing directly from airport i to airport j. Consider the problem of finding the
cheapest flight from i to j where we may fly to as many intermediate air-
ports as desired. Verify that the Principle of Optimality holds for the
minimume-cost flight. Derive a recurrence relation based on the Principle
of Optimality.

9.2 Does the Principle of Optimality hold for the costliest trips (no revisiting
of airports, please)? Discuss.

9.3 Does the Principle of Optimality hold for coin changing? Discuss with var-
ious interpretations of the Combine function.

Section 9.2 Optimal Parenthesization for Computing a
Chained Matrix Product

9.4 Given the matrix product MM, --- M, _, and a 2-tree T with 7 leaves,

show that there is a unique parenthesization P such that T = T(P).
9.5 Give pseudocode for ParenthesizeRec and analyze its complexity.
9.6 Show that the complexity of OptimalParenthesization is in ©(n*).

9.7 Using OptimalParenthesization, find an optimal parenthesization for the
chained product of five matrices with dimensions 6 X 7,7 X 8, 8 X 3,
3 X 10,and 10 X 6.

9.8 Write a program implementing OptimalParenthesization and run it for some
sample inputs.

286 M PART Il: Major Design Strategies

Section 9.3 Optimal Binary Search Trees

9.9

9.10

9.11

9.12

Use dynamic programming to find an optimal binary search tree for the
following probabilities, where we assume that the search key is in the
search tree; thatis,g, = 0,7 =0, ..., n:

keys i 0 1 2 3
probabilities p; 4 3 2 1

Use dynamic programming to find an optimal search tree for the follow-
ing probabilities:

i 0 1 2 3 4 5
P, 2 1 2 .05 .05
q, .05 0 25 0 1 0

a. Design and analyze a recursive algorithm that computes an optimal bi-
nary search tree T for all the keys from the two-dimensional array
Root[0:n — 1, 0:n — 1] generated by OptimalSearchTree.

b. Show the action of your algorithm from part (a) for the instance given
in Exercise 9.10.

a. Give a set of probabilities p, ..., p, _ | (assume a successful search so
that g, = q, = - = q,, = 0), such that a completely right-skewed search
tree T (the left child of every node is null) is an optimal search tree
with respect to these probabilities.

b. More generally, prove the following induction on »: If T is any given
binary search tree with n nodes, then there exists a set of probabilities
Pos -+ » P, —, sSuch that T is the unique optimal binary search tree with
respect to these probabilities.

Section 9.4 Longest Common Subsequence

9.13

9.14

9.16

Show the array LCS[0:9, 0:10] that is built by LongestCommonSubseq for
T[0:8] = “alligator” and P[0:9] = “algorithms”.

By following various paths in the array LCS[0:8, 0:11] given in Figure 9.8,
find all the longest common subsequences of the strings “usbeeune” and
“subsequence”.

Design and analyze an algorithm that generates all longest common sub-
sequences given the input array LCS[0:n — 1, 0:m — 1].

Write a program that implements LongestCommonSubseq, and run it for
some sample inputs.

CHAPTER 9: Dynamic Programming B 287

Additional Problems

9.17

9.18

9.19

9.20

Consider a sequence of # distinct integers. Design and analyze a dynamic
programming algorithm to find the length of the longest increasing sub-
sequence. For example, consider the sequence:

45 23 9 3 99 108 76 12 77 16 18 4
A longest increasing subsequence is 3 12 16 18, having length 4.

The 0/1 knapsack problem is NP-hard when the input is measured in bi-
nary. However, when the input is measured in unary (see the discussion
at the end of Section 7.3 of Chapter 7), dynamic programming can be
used to find a polynomial-complexity solution. Design and analyze a dy-
namic programming solution to the 0/1 knapsack problem, with positive
integer capacity and weights, which is quadratic in C + », where C is the
capacity and » is the number of objects. Hint: Let V[i, j] denote the maxi-
mum value that can be placed in a knapsack of capacity j using objects
drawn from {b, ... , b, _,}. Use the principle of optimality to find a recur-
rence relation for V[i, j].

Design and analyze a dynamic programming solution to the coin-chang-
ing problem under similar assumptions to that in the previous exercise.

Given 7 integers, the partition problem is to find a bipartition of the inte-
gers into two subsets having the same sum or determine that no such bi-
partition exists. Design and analyze a dynamic programming algorithm
for solving the partition problem.

MATCHING AND NETWORK
FLOW ALGORITHMS

Finding matchings and maximum flows in graphs and networks are two funda-
mental problems with myriad practical applications. We begin this chapter with
an algorithm for finding a perfect matching in a bipartite graph and a maximum-
weighted perfect matching in a weighted complete bipartite graph. Some of the
techniques we use to solving the matching problems, such as finding augment-
ing paths when constructing a perfect matching in a bipartite graph, can be gen-
eralized to apply to the maximum flow problem.

There are many natural interpretations of flows in networks, such as fluid
flow through a network of pipelines, data flow through a computer network,
traffic flow through a network of highways, current flow through an electrical
network, and so forth. Usually, each edge in a network has a certain flow capac-
ity (a capacitated network), and the problem arises of finding the maximum flow
subject to the capacity constraints of the edges. One of the most celebrated the-
orems about capacitated networks is the max-flow min-cut theorem of Ford and
Fulkerson. In this chapter, we present this theorem and an associated algorithm

417

418 M PART lll: Graph and Network Algorithms

for finding a maximum flow in a capacitated network. Finding a maximum flow
is useful in solving the well-known marriage problem, which is equivalent to the
problem of finding a perfect matching in a bipartite graph.

Perfect Matchings in Bipartite Graphs

An independent set of edges, or matching, in a graph G is a set of edges that are
pairwise vertex disjoint. A matching that spans the vertices is called a perfect
matching. In this section, we discuss an algorithm known as the Hungarian algo-
rithm for finding a perfect matching or determining it does not exist. We also dis-
cuss the Kuhn-Munkres algorithm, which employs the Hungarian algorithm to
find a maximum-weight perfect matching in an edge-weighted complete bipar-
tite graph. We begin by discussing the marriage problem, which is a colorful in-
terpretation of the problem of finding a perfect matching in a bipartite graph. In
Chapter 24, we will give a probabilistic algorithm for determining whether or
not a bipartite graph has a perfect matching.

14.1.1 The Marriage Problem

Suppose we have asetof nboys b, b,, ..., b, and a setof n girls g,, 9,, ... 9,, Wwhere
each boy knows some of the girls. The classical marriage problem is to determine
a necessary and sufficient .condition so that each boy can marry a girl that he
knows (no two boys can marry the same girl). More formally, the marriage
problem is finding the conditions under which the permutation o: {1, 2, ... , 1} >
{1, 2, ..., n} exists such that boy b, knows girl Iy i=1,2,..,n If such a per-
mutation o exists, then the corresponding set of matches P_ = {{b,, 95 i)}| 1=1,2,
..., n} is called a perfect matching.
Let K, denote the set of girls that boy b, knows, i = 1, ..., n. For example,

suppose that # = 5 and the sets K,i=1,..,5,aregiven by

Ky = {91, 92, 95 95}, K> = {91, 95}, K5 = {92, 93}, Ks = (95, 9> 95}> K5 = {95}

Then, the following set of pairs determines a perfect matching:

{61, 94}, {2, 91} {3, 92} {bas 95}, {bs, 93}

The marriage problem is naturally modeled using a bipartite graph G, where
one set X of the vertex bipartition consists of the set of n boys and the other set Y
consists of the set of girls. A vertex b,in X is joined to a-vertex g;in Y whenever
the boy b, knows the girl g; (see Figure 14.1). The marriage problem then be-
comes determining a necessary and sufficient condition for a bipartite graph to
contain a perfect matching—that is, a set of #» edges no two of which have a ver-
tex in common.

CHAPTER 14: Matching and Network Flow Algorithrms I 419

FIGURE 14.1

The bipartite graph b
: 1
G corresponding
to sets

K1 = {gp 9,. 94 95}:

KZ = @11 gj}l G=
Ks = {9,. 93}
Ky =193, 94 95},

G contains the
perfect matching 9 92 93 9a 9s

{b,. g,). by, g,
{b;. 9.}, {b,. g4},
{b.. g5}

Suppose in the previous example that K, is replaced with the set
Ky = {9:, 92 95}-

Because the four boys b,, b,, b, by collectively know only the three girls
91> 95 95> a perfect matching cannot exist. More generally, if there exists a set of
k boys who collectively know strictly less than & girls, then a perfect matching
does not exit. Surprisingly, the converse is also true, by a theorem of Hall, which
states that a solution to the marriage problem exists if and only if every set of
k boys collectively knows at least k girls, k € (1, 2, ..., n}.

We can restate Hall’s theorem for bipartite graphs as follows: For §, a set of
vertices of G, let I'(S) denote the set of all vertices that are adjacent to those in S;
that is,

['(S) = {vE Vlthere exists a vertex u in S such that uv € E}. (14.1.1)

Theorem 14.1.1 Hall’s Theorem

A bipartite graph with vertex bipartition V = X U Y contains a perfect match-
ing if and only if, for every subset S of X,

IS| = T (S)|. (14.1.2)
PROOF
First, suppose that there exists a perfect matching M in G. For u € V, let M(u)

denote the mate of u in M—that is, the unique vertex v such that uv € M. For
SC X, let

M(S) = {M(x)|x € s}. (14.1.3)

20 W PART lll: Graph and Network Algorithms

Clearly, M(S) C I'(S). Hence,

IT(S) = [M(S)| = [S]. u

We complete the proof of Theorem 14.1.1 in the next subsection by present-
ing a “matchmaker” algorithm, called Hungarian, which accepts an initial
matching M (possibly empty) and repeatedly augments M until either a perfect
matching is generated or a set S C X is found such that|T'(S)| </|S].

14.1.2 The Hungarian Algorithm

The Hungarian algorithm uses the notion of an M-alternating path. Given a
matching M, we say that a vertex v of G is M-matched if it is incident with an
edge of M; otherwise, we say that vis M-unmatched. An M-alternating path is one
where the edges alternately belong to E(G) \ M and M. An M-augmenting path
is an alternating path in which the initial and terminal vertices are both
M-unmatched.

: Given an M-augmenting path P, the sizé of the matching M can be increased by 1 by !
removing the edges of M belonging to P, and adding to M the remaining edges of P.

The larger matching described in this key fact can be expressed as the sym-
metric difference M @ E(P) of M and the edges E(P) of P; that is

M@ E(P) = (MUE(P)) \ (M N E(P)). (14.1.4)

The Hungarian algorithm searches for augmenting paths. To find an M-
augmenting path in G, the algorithm grows a tree T, called an M-alternating tree,
having the following properties:

1. The root r of T'is an M-unmatched vertex belonging to X.

2. For each odd integer i less than the depth of T, each edge of T joining a ver-
tex at level i to a vertex at level i + 1 belongs to M.

3. The leaf nodes of T all belong to X.

An M-alternating tree is illustrated in Figure 14.2. Clearly, all the paths in an
M-alternating tree T are M-alternating paths, and X; and Y, denote the subset of
vertices of X and Y, respectively, belonging to T.

CHAPTER 14: Matching and Network Flow Algorithms Il 421

FIGURE 14.2

An M-alternating
tree T rooted at
vertex r.

The proofs of the next three lemmas are straightforward and left as
exercises.

. .
Lemma 14.1.2 [f M is a matching and P is an M-augmenting path, then M @ E(P) is a match-

ing of size one greater than M. O

Lemma 14.1.3 |f Tis an M-alternating tree, then

| X = | V7| + 1. (14.1.5) O

Lemma 14.1.4 Given an M-alternating tree T, if there exists a vertex x € X, that is adjacent to

an M-unmatched vertex y (not in T), then the path from the root r of T to x,
together with the edge xy, determine an M-augmenting path. a

422 M PART Ill: Graph and Network Algorithms

If all the vertices in X are M-matched, then M is a perfect matching. In this
case, the Hungarian algorithm returns the perfect matching M and terminates. In
the case where the vertices in X are not all matched, the Hungarian algorithm
looks for an augmenting path by growing an M-alternating tree T. The tree T
may be initialized to consist of the single vertex r, where r is chosen arbitrarily
from the set of unmatched vertices in X. At each stage of growing the tree T, we
encounter one of the following three cases:

1. I'(X;) — Y,is empty. (Action: algorithm terminates.)
Then by Lemma 14.1.3, [T'(X,)| = [¥,| = |X,| — 1. The Hungarian algo-
rithm then returns § = X, and terminates, because by Theorem 14.1.1, no
perfect matching exists.
In the next two cases, I'(X;) — Y, is nonempty, and we choose y to be any
vertex in I'(X;) — Y, and x to be any vertex in X, adjacent to y.

2. Vertex y is matched. (Action: T is augmented.)
Then we augment T to obtain a new M-alternating tree by adding the edges
xy and yz, where z is the mate of y in M.

3. Vertex y is unmatched. (Action: M is augmented.)
Then an augmenting path P in T from r to x together with the edge xy has
been found. We then replace M by the augmented matching M @ E(P) con-
taining one more edge.

In case 3, we either have found a perfect matching or we look for another
augmenting path by growing another M-alternating tree rooted at a new un-
matched vertex in X. Clearly, M can be augmented at most n times. Because
at each stage the alternating tree T can be grown in time O(n?), the worst-case
complexity of the following procedure Humngarian is O(n®). Pseudocode for
Hungarian follows.

=+: procedure Hungarian(G, M, S)

Input: ~ G (a bipartite graph with vertex bipartition (X, Y))
M (an initial matching, possibly empty)
Output: M (a perfect matching if one exists)
S (a set of vertices with the property that |T'(S)| < |S| if no perfect matching
exists)
AugmentingM « .true.
while AugmentingM do

SesosunNL it et sURBE Y.

if all the vertices in X are M-matched then //M is a perfect matching
: AugmentingM « false.
: else //Grow M-alternating tree T

r « any M-unmatched vertex in X
T « tree consisting of the single vertex r
GrowingTree « .true.

seesvece

CHAPTER 14: Matching and Network Flow Algorithms W 423

while GrowingTree do

if [(X;) =Y, then
SeX; ZANOIRN
GrowingTree « false.
AugmentingM « false.

else
y « any vertex in I'(X;) - Y,
X « any vertex in X; adjacent to adjacent to y

CEELICIIEBULIIIIRNBRIIEIEREDBOIOISIBUDIGE

if y is M-matched then //augment T
Z « M(y) //z is the mate of y in M
Te—TUxyUyz
else //an M-augmenting path has been
found
: P « path in T from r to x together with the edge xy
M=M®DEP //augment M
: GrowingTree « false.
endif
endif
endwhile
. endif
endwhile

end Hungarian

L e R LR 4ssmesccsscascrans #s0sansMscsinBRLOIIINBTIPIIIERNSISIEEIITRAINGGERN TR S

“csnanve

Figure 14.3 illustrates the action of procedure Hungarian for a sample bipar-
tite graph. For definiteness, in Figure 14.3 we show the perfect matching gener-
ated by always choosing vertices in order of their vertex number. More precisely,
the phrase “any ... vertex” occurring in three statements in the pseudocode for
Hungarian is replaced by the phrase “the ... vertex of smallest index” when gen-
erating the perfect matching in Figure 14.3. We leave the intermediate steps in
finding the augmenting paths as an exercise.

424 W PART lll: Graph and Network Algorithms

... x| %y X X Xs
FIGURE 14.3 S 3
Action of procedure
Hungarian for a _
sample bipartite G=
graph with initial
matching {x,, y,}.
x5, y3h {x,, vab
Vertices are 4 V2 V3 Ya s
considered in the
order Qf ’Fhelf Sample bipartie graph G and initial matching {x;,y1}, {x3.y3}. {x4.Y4}
indices.
X} X2 X3 Xq X5
G=
N Y2 y3 Ya Ys
A first M-augmenting path P: x,y,x,y,, found by Hungarian with
starting M-unmatched vertex x, yielding augmented
matching M @ E(P)={x1y3,X2y1,X3Y3.X4Y4}
X1 Xy X3 X4 Xs
G=
Y1 Y2 Y3 Y Ys :

A second M-augmenting path P: xsy3x3y,x,ys, found by Hungarian with
starting M-unmatched vertex xs yielding augmented perfect
matching M @ E(P)=(X1y5,X2¥1,X3Y2.X4Y4.X5Y3}

14.1.3 Maximum Perfect Matching in a Weighted Bipartite Graph

Suppose n workers x|, x,, ... , x, are to be assigned to n jobs y,, ¥,, ... , ¥, where
each worker is qualified to perform any of the jobs. Associated with each
worker-job pair (x,, ¥;) is a weight w; measuring how effectively worker x; can

CHAPTER 14: Matching and Network Flow Algorithms B 425

perform job Y- The natural problem arises of finding assignments of workers to
jobs so that the total effectiveness of each workers is optimized. This problem can
be modeled using a weighted complete bipartite graph G = (V, E), with vertex bi-
partition X = {x, ..., x,} and Y = {y,, ..., y,}. Each edge XY, of G is assigned the
weight w;, i,j € {1, ..., n}. Clearly, a perfect matching in G corresponds to an as-
signment of each worker to a job so that no two workers are assigned the same
job. We define the weight of a perfect matching M, denoted by w(M), to be the
sum of the weights of its edges.

w(M) = Dw(e). (14.1.6)

eEM

A maximum perfect matching is a perfect matching of maximum weight over
all perfect matchings of G. Because G is complete, any permutation 7 of
{1,2, ..., n} determines a perfect matching M_ = XY lie{l,...,n}} and con-
versely. Thus, a brute-force algorithm that enumerates all n! perfect matchings
and chooses one of maximum weight is hopelessly inefficient.

We now describe an O(»?) algorithm due to Kuhn and Munkres for finding
a maximum perfect matching in a weighted complete bipartite graph. The
Kuhn-Munkres algorithm uses the Hungarian algorithm, together with the no-
tion of a feasible vertex weighting.

DEFINITION 14.1.1 A feasible vertex weighting is a mapping ¢ from V to the real numbers such that
for each edge xy € E (eachx € Xandy € Y),

é(x) + ¢(y) = 0(x). (14.1.7)

Any sufficiently large ¢ is a feasible vertex weighting. For example, the
following vertex weighting is feasible:

_ Jmax {w(w)lw € E(G)} ifveELX,
o) = {0 otherwise (14.1.8)

The following proposition is easily verified.
Proposition 14.1.5 Let ¢ be any feasible vertex weighting and M any perfect matching of G. Then,

w(M) = Xé(v). (14.1.9) O

vVEV

426 W PART lll: Graph and Network Algorithms

Given a vertex weighting ¢, the equality subgraph G, = (V,, E,) is a
subgraph of G such that V, = V(G) and E, consists of all the edges xy such that
w(xy) = ¢(x) + ¢(y). Note that it is possible for some of the vertices of G to be
isolated vertices in G .

proposition 14.1.6 1et ¢ be any feasible vertex weighting. If the equality subgraph G, contains
a perfect matching M, then M is a maximum perfect matching in G. d

Observe that if M is a perfect matching in Gy» then w(M) = X ,é(v). Hence,
Proposition 14.1.6 follows from Proposition 14.1.5.

Starting with an initial feasible vertex weighting, such as the one given by
Formula (14.1.8), the Kuhn-Munkres algorithm applies the Hungarian algo-
rithm to the subgraph G. If a perfect matching M, is found, then by Proposition
14.1.5, M is a maximum perfect matching in G. On the other hand, suppose the
Hungarian algorithm terminates by finding a matching M and an M-alternating
tree T such that ['(X;) — Y, is empty. Then we have found a set S = X, such that
IT,(8)] = Is| = 1 < |s|. Instead of terminating at this point, we replace ¢ with
a new feasible weighting ¢’ and continue the Hungarian algorithm in the equal-
ity graph G oy of ¢'. The new feasible weighting ¢’ is constructed as follows. Set

e = min{p(x) + ¢(y) — w(xY)|Ix €S,y € Y = T4(S)}. (14.1.10)
For each v € V(G), the weighting ¢’ is defined by

o(v) —e vES,
P'(v) =qb(v) +& vET(S), (14.1.11)
é(v) otherwise.

It is easily verified that the vertex weighting ¢’ given by (14.1.11) is a feasi-
ble vertex weighting. Moreover, the following key fact allows us to continue
growing the M-alternating tree T.

7 The equality subgraph G & contains the M-alternating tree 7. Further, G & contains at least
¥ one edge {x, y}, wherexESandy €Y - T & (8). Since y is unmatched by M, the path in
3 G & consisting of the path in T from its root to x together with edge xy is an

} M-augmenting path.

CHAPTER 14: Matching and Network Flow Algorithms W 427

Thus, by continuing the Hungarian algorithm in G & the matching M will be
augmented by at least one edge. After at most »n/2 steps in which ¢ is replaced
with ¢', we obtain a perfect matching M and a feasible weighting ¢* such that M
is contained in the equality subgraph G & of ¢*. By Proposition 14.1.6, such a
perfect matching will necessarily be a maximum perfect matching in G.

In the following pseudocode for the Kuhn-Munkres algorithm, we call the
procedure Hungarian2, which is identical to Hungarian except that the alternat-
ing tree T'is added as an input/output parameter.

2eceeeve. procedure KuhnMunkres(G, ¢, M)
Input: G (a weighted complete bipartite graph with vertex bipartition
&, Xl =1yl =n)
¢ (a positive edge weighting of G)
Output: M (a maximum perfect matching)
¢ « any feasible vertex weighting //in particular, the one given by
Formula 14.1.8
G,, « equality subgraph for ¢
M « any matchingin G, //in particular, M can be chosen to be
empty
PerfectMatchingFound « false.
while .not. PerfectMatchingFound do
Hungarian2(G & M, S, T)
if M is a perfect matching then
PerfectMatchingFound « .true.

else
e & min {p(x) + d(y) —wly) IxE S,y €Y -T,(S)}
forallx € Sdo
) =¢k) —¢
endfor
forally € I')(S) do
d() =) + ¢
endfor
endif
endwhile

end KuhnMunkres

..

We leave it as an exercise to show that the worst-case complexity of proce-
dure KuhnMunkres is O(n?)

428 W PART lll: Graph and Network Algorithms

The problem of finding a maximum flow in a network from a source s to a sink ¢,
where each link in the network has a given capacity, and the dual problem of
finding a minimum cut in such a network, is a classical optimization problem
with many applications. Our study of flows in networks begins by formally
defining the notion of a flow in a digraph (an uncapacitated network) and estab-
lishing some elementary results about flows.

The theory of flows in networks modeled on digraphs includes as an important special case flows
modeled on graphs by associating with the graph its combinatorially equivalent (symmetric

digraph.

14.2.1 Flows in Digraphs

Let D = (E, V) be a digraph with vertex set V and directed edge set E. A real
weighting w of the edges of D is a mapping from E to the set R of real numbers. We
refer to w(e) as the w-weight of edge e. Forv € V, we let o, (0, v) and o (w, V) de-
note the sum of the w-weights over all the edges having head v and tail v, re-

spectively, so that

(V) = 3 w(w),

uvE€EE

Tou(@,v) = 2 w(vw).

VWEE

By convention, o, (w, v) = 0 if there are no edges having head v. Similarly,
our(@, V) = 0if there are no edges having tail v.
The following proposition is easily verified.

g

Proposition 14.2.1 Gjven any real weighting w of the edges in a digraph D,

Z(Gin(w, V) - o'out(w: V)) = 0. . O

vEV

Proposition 14.2.2

FIGURE 14.4

A flow of value 55.

CHAPTER 14: Matching and Network Flow Algorithms W 429

Now suppose we are given two vertices s and ¢ such that there are no edges hav-
ing head s or tail ¢. A flow ffrom s to t is a weighting of the edges such that

on(fiv) = oou(fiv), VYveV\{s,t} (14.2.1)

Given any vertex vin D, we refer to o, (f,v) and o, (f, v) as the flow into v and the
flow out of v, respectively. Formula (14.2.1) is called a flow conservation equation.
The value of flow f, denoted by val(f), is defined to be the flow out of s. It follows
easily from Proposition 14.2.1 that the flow out of s equals the flow into . Hence,

Vﬂl(f) = o-out(f’ S) = a-in(fr t)' (1422)

A unit flow is a flow fsuch that val(f) = 1. Figure 14.4 illustrates a flow f of value
55 on a sample digraph D.
The following proposition is easily verified.

The set of all flows is closed under linear combinations; that is, for any flows
f, and f, and real numbers A| and A,, A, f, + A, f, is a flow. Moreover,

val(Afy + Afo) = Aval(fy) + Ayval(f). O

430 M PART lll: Graph and Network Algorithms

Now consider a directed path P = se u,e,u, ... u,_ et from s to t (not neces-

sarily a simple path). Associated with P is the flow x, from s to ¢ given by

1 e€E(P)
xp(e) = {0
e & E(P), Ve€E.

We call x, the characteristic flow of P. Note that the characteristic flow is a unit
flow.

In the next section, we compute maximum flows in a capacitated network
by using the notion of a semipath, which is a path where the orientation of the
edges is ignored. More precisely, a semipath S from s to t is an alternating se-
quence of vertices and edges se,u e,u, ... u,_ et such that either ¢, has tail », _ |
and head u, (e, is a forward edge of S) or e, has tail v, and head u, _ | (e; is backward
edgeof S),i=1, ..., p, where u, = s and u, = t. Associated with semipath S is the
flow x, called the characteristic flow of S, given by

1 e is a forward edge of S,
xs(e) ={—1 eisabackward edge of S, (14.2.3)
0 otherwise, Ve € E.

It is easily verified thag x; is a unit flow.

14.2.2 Flows in Capacitated Networks

A capacitated network N (sometimes called a transportation or flow network) con-
sists of the 4-tuple (D, s, t,¢), where D = (V, E) is a digraph; s and ¢ are two distin-
guished vertices of D called the source and sink, respectively; and c is a positive
real weighting of the edges, called the capacity weighting of D. We assume that all
the edges incident with s are directed out of s, and all the edges incident with ¢
are directed into t. We refer to c(e) as the capacity of edge e.

A flow fin a capacitated network N is a flow in D from s to t such that for each
e € E, f(e) is nonnegative and does not exceed the capacity of e; that is

0 = f(e) =c(e), VeEE.
Figure 14.5 shows a flow of value 23 in a sample capacitated network N on

eight vertices. In Figure 14.5 and all subsequent figures, when illustrating a flow
f, all edges ¢ such that f(e) = 0 are omitted.

CHAPTER 14: Matching and Network Flow Algorithms B 431

Aflow fin N

FIGURE 14.5
A sample capacitated network N and a flow f having value val(f) = 23.

A maximum (value) flow is a flow fin N whose value is maximum over all
flows in N. A naive attempt to finding a maximum flow might proceed as fol-
lows. First we find a path P, from s to t in N using an algorithm such as a breadth-
first search. Let A| denote the minimum capacity among all the edges of P,. Then
f = Axp is a flow in N having value A| Next, we adjust the capacities of the
edges of N by subtracting A, from each edge belonging to P, and deleting all the
edges of N whose capacity becomes zero. We then find a path P, (if one exists) in
the new network. We now augment the flow fby A,x, , where A, is the mini-
mum capacity (in the new network) among all the edges of P,. The current flow
f= ’\1Xpl + A x,p_ has value A, + A,. Again, we subtract A, from every edge be-
longing to P, and delete all the edges whose capacity becomes zero. Continuing
in this way, we find paths P, ... , P, and associated real numbers A,, ... , A,
respectively, until no paths are left from s to ¢ in the final network.

We illustrate the action of our naive attempt in Figure 14.6 for a sample ca-
pacitated network. Unfortunately, the final flow fattained has value 14, whereas
the maximum flow shown in Figure 14.7 has value 24. However, any flow gen-
erated by our naive attempt does have a maximality property—namely, if g is
any flow different from f, then g(e) < f(e) for some edge e.

432 M PART IIl: Graph and Network Algorithms

FIGURE 14.6

Action of naive
attempt to find
maximum flow
for a sample
capacitated
network N,
yielding flow

f = 10xp, + X,
+ 3xp, having
value

14. This flow is
suboptimal because
a maximum flow
f* shown in
Figure 14.7 has
value 24.

f=10xp, reduced N

path P3, A3,=3 f=10xp, + xp, + 3xp, reduced N

CHAPTER 14: Matching and Network Flow Algorithms W 433

FIGURE 14.7

A maximum flow
f* having value 24
in the capacitated
network N of
Figure 14.5.

A capacitated network N A maximum flow f* on N

The flow f of Figure 14.6 generated by our naive algorithm is a dead end in
our search for a maximum flow in the sense that we can no longer augment fby
simply finding directed paths from s to t. The following key fact using the notion
of a semipath allows us to continue to augment the flow f.

E Given a semipath with no forward edge used to capacity and nonzero flow in each back-
ward edge, we can continue to augment f by adding flow to forward edges while remov- |
(78 ing flow from backward edges.

14.2.3 Finding an Augmenting Semipath

The residual capacity with respect to a flow fis c(e) — f(e). An edge e is f-saturated if

b the residual capacity is zero; otherwise, edge e is f-unsaturated. A semipath Sis an
f-augmenting semipath if every forward edge of S is f~unsaturated and f(e) > O for
every backward edge e of S. For ¢ € E(S), we let

c(e) — f(e) eisaforward edge of S,
(e) e is a backward edge of S.

Cf(S, e) =
Let ¢{S) denote the minimum value of ¢{S, ¢) among all the edges of S; that is,
¢(S) = min{c(S, e) le € E(S)}.
Now consider the edge weighting f given by

~

f=F+¢(S)xs (14.2.4)

434 M PART lll: Graph and Network Algorithms

where x; is the characteristic flow of S given by Formula (14.2.3). Thus, for each
e € E(G),

f(e) + ¢(S) eisaforward edge of S,
fle) =S f(e) — ¢(S) eisabackward edge of S,
(e) otherwise.

Proposition 14.2.2 implies that the edge weighting f given by Formula
(14.2.4) is a flow in the digraph D. Further, it is immediate from the definition of
cf(S) that foralle € E,

0 < f(e) = c(e).

Hence, f is a flow in the capacitated network N. Further, since X 1s a unit flow,
it follows from Proposition 14.2.2 that

val(f) = val(f) + (S),

so that f has a strictly greater value than f.

A semipath S and the value ¢,(S) can be computed by finding a path from s to
t in the f-derived network N; constructed from the network N and the flow f. The
network Nis obtained by starting with vertex set V and adding edges as follows.
For each edge uv of N that is f-unsaturated, we add an edge uv to N, having
weight c(uv) — f(uv). For each edge uv of N such that f(uv) > 0, we add an edge
vuto N, having weight f(uv). When uv and vu are both edges of N, it is possible for
N;to have two edges joining vertex u to vertex v. In our search for a maximum
flow, allowing such pairs of edges does not present a problem. In fact, we can
even eliminate the possibility of such pairs in N by replacing fwith a new flow f
obtained by subtracting min {f(uv) ,flvu)} from both f(uv) and f(vu) so that one of
them becomes equal to zero. The latter operation does not affect the value of the
flow f. Note that if val(f) = 0, then N;= N.The f-derived network N, for a sample
network N and flow fis illustrated in Figure 14.8.

For P, a path from sto ¢ in N, we define the weight w(P) to be the minimum
weight over all the edges of P; that is,

w(P) = min{w(e)|e € E(P)}.

The following proposition follows immediately from the definitions of N, and
the f~augmenting semipath S.

FIGURE 14.8

The f-derived
network N, for a
sample network N
and flow f.

CHAPTER 14: Matching and Network Flow Algorithms W 435

Proposition 14.2.3 [f P js a path from s to ¢ in N,, then the corresponding semipath S in N is an

f-augmenting semipath. Further,

(S) = u(P). a

It follows from Formula (14.2.4) that if there exists an f~augmenting semi-
path S, then we can find a flow whose value is strictly greater than f. The Ford-
Fulkerson algorithm is based on the fact that the converse is also true; that is, if
there is no f-augmenting semipath, then fis a maximum flow. To prove this important
result, we introduce the concept of a cut.

14.2.4 Bounding Flow Values by Capacities of Cuts

Consider a bipartition of the vertex set V into two disjoint sets X and Y. We
denote this bipartition by (X, Y). The cut associated with the bipartition (X, Y),
denoted cut(X, Y), is defined by

aut(X,Y) = {xy EE|xE X,y € Y}.

436 M PARTIll: Graph and Network Algorithms

We say a set of edges ['is a cutif I' = cut(X, Y) for some bipartition (X, Y) of V.
Foru,v€ V,ifu € Xand v € Y, then we say that I separates u and v. Unless oth-
erwise stated, we assume that I separates the source s from the sink ¢. The capac-
ity of T', denoted by cap(T'), is the sum of the capacities of all the edges in I;
that is,

cap(T) = Dc(e).
eerl
A minimum capacity cut (or simply minimum cut) is a cut I' whose capacity is
minimum over all cuts separating s and ¢.
Because deleting all the edges of a cut disconnects the source s from the sink
t, intuitively we would expect that the value of any flow fis not greater than the
capacity of any cut I'. The following proposition affirms this intuition.

Proposition 14.2.4 et fbe any flow from s to tin N, and let T’ = (X, Y) be any cut separating s and
t. Then, the value of fis bounded above by the capacity of I'; that is,

val(f) = cap(T).

PROOF
Given a nonnegative weighting w of E, we extend » to a mapping of all
V X V as follows:

w(uv) uv €E€E,
u,v) = .
w(u,v) {0 otherwise.
For A,BcCV,let
w(4,B) = > > w(a,b). (14.2.5)
a€EA bEB

In the notation of Formula (14.2.5), the flow conservation equation (14.2.1)
can be rewritten as follows:

f(u, V) = f(V,u) =0, u€V—{st} (14.2.6)
Formula (14.2.2) then becomes

f(s, V) = f(V, t) = val(f). (14.2.7)

CHAPTER 14: Matching and Network Flow Algorithms B 437

It follows immediately from Formulas (14.2.6) and (14.2.7) that
(X, V) = f(V, X) = val(f). (14.2.8)

Clearly, for U, which is any subset of V, we have

U, V) =f(U, X) +f(U,Y),

f(v,U) = f(X, U) + f(Y, U). (14.2.9)

Substituting U = X in both parts of Formula (14.2.9), subtracting the second
part from the first, and employing Formula (14.2.8) yields

(X, Y) — (Y, X) = f(X,V) — f(V, X) = val(f). (14.2.10)
Using Formula (14.2.10), we have
val(f) = f(X, Y) — f(Y, X)
=f(X,Y)
= 2 f09)

xyel

= D c(xy) (since f(e) = c(e) for all e € E)

xy€l

cap(T"). []

Corollary 14.2.5 [f fis a flow from s to ¢ and I is a cut separating s and ¢ such that
val(f) = cap(T'), then fis a maximum flow and I is a minimum cut.

PROOF _
Let f’ be any flow from s to t and let I’ be any cut separating s and . Then by
Proposition 14.2.4, we have

val(f') = cap(T') = val(f),
cap(I'") = val(f) = cap(T). -

Corollary 14.2.5 states a condition guaranteeing that fis a maximum flow
and I' is a minimum cut, but it does not tell us whether such a flow fand cut I
actually exist. In fact, a seminal result in flow theory is that such a flow fand cut
I' always exist.

438 M PART lll: Graph and Network Algorithms

Theorem 14.2.6 Max-Flow Min-Cut Theorem

Let N = (D, ¢, s, t) be a capacitated network. The maximum value of a flow
from s to f equals the minimum capacity of a cut separating s and ¢. a

To prove Theorem 14.2.6, we use Corollary 14.2.5 to establish it is sufficient
to exhibit a flow fand cut I' such that val(f) = cap(I'). In the next subsection, we
give an algorithm for computing such a flow fand cut I'.

14.2.5 The Ford-Fulkerson Algorithm

The following procedure computes a maximum flow and minimum cut by
repeatedly augmenting the current flow fusing an f~augmenting semipath.

gmn% .-« procedure FordFulkerson(N, f, T')
: Input: N=(D,s,t,c) (a capacitated network)
Output: f (maximum flow)
I'(minimum cut)

feO

Nf «N

while there is a directed path from s to ¢ in the f-derived network N, do
P« apathfromstotin N,
S « the f-augmenting semipath in N corresponding to path Pin N,

c/(S) & n(P) //u(P) is the minimum weight over all the edges of P
fef+¢S)xs //augment f
update N,
endwhile
X « set of vertices that are accessible from s in N, /s EX
Y « set of vertices that are not accessible from s in NV, /tEeY
[« cut(X, V)

end FordFulkerson

--

The correctness of procedure FordFulkerson is established with the aid of the
following two lemmas, whose proofs are left as exercises.

Lemma 14.2.7 Let fand (X, Y) be the flow and vertex bipartition, respectively, generated by

procedure FordFulkerson. Then every edge xy of the cut I' = cut(X, Y) is satu-
rated; that is,

fOy) = c(xy). a

Lemma 14.2.8

CHAPTER 14: Matching and Network Flow Algorithms W 439

Let fand (X, Y) be the flow and vertex bipartition, respectively, generated
by procedure FordFulkerson. Then for each edge yx € E(D), where y € Y and
X € X, we have

flyx) = 0. o

Lemmas 14.2.7 and 14.2.8 imply that

X, Y) = cap(T),
(Y, X) = 0.

Thus, by Formula (14.2.10) we have
val(f) = f(X, Y) = f(Y, X) = cap(T).

By Corollary 14.2.5, fis a maximum flow and I is a minimum cut, which
completes the correctness proof of procedure FordFulkerson.

The Ford-Fulkerson augmenting semipath algorithm is a general method for
computing a maximum flow and minimum cut. In procedure FordFulkerson, we
did not specify how the path P is generated in the derived network N;at each
stage. In general, there may be many such paths, and the efficiency of Ford-
Fulkerson is dependent on which augmenting semipath S is chosen at each stage.

For a poor choice of augmenting semipaths S, procedure FordFulkerson may
never terminate. However, in the case when the capacities on the edges are all
integers, procedure FordFulkerson terminates after having performed at most
val(f) iterations of the while loop. Because each iteration can be performed in
time O(m), the worst-case complexity W(n, m) of procedure FordFulkerson
belongs to O(mx*val(f)). Since val(f) depends on the capacities of the edges, it can
be arbitrarily large. It is not hard to find examples showing that for a poor choice
of augmenting semipaths S, W(n, m) can also be arbitrarily large.

Edmonds and Karp showed that a good choice for the augmenting semipath
S at each stage of procedure FordFulkerson is the shortest one (with a minimum
number of edges) over all such semipaths. At each stage, a shortest augmenting
semipath S can be found by performing a breadth-first search of the f-derived
network N, to find a shortest path P from s to t. The Edmonds-Karp algorithm has
worst-case complexity W(n, m) € O(nm?). (The proof of this complexity result is
beyond the scope of this book.) The Edmonds-Karp algorithm is illustrated in
Figure 14.9 for a sample flow network N having eight vertices and 17 edges. The
shortest path generated at each step is indicated with a dotted (as opposed to
solid) line.

440 MW PARTlIl: Graph and Network Algorithms

FIGURE 14.9 Original flow network N with capacities ¢, and initial flow f=0:

Action of the
Edmonds-Karp
algorithm for a

sample capacitated
network N.

Step 1:

Step 2:

Step 3:

FIGURE 14.9

Continued

CHAPTER 14: Matching and Network Flow Algorithms

Step 4:

Step 5:

Step 6:

There are no more augmenting semipaths. The final flow f has value 23.

Step 7: Compute the f-derived network Nyand minimum cut cut(X.Y).

The set X = {0,1,2,3,5} of vertices that are accessible in Ny from the source s (marked with ©) and
the set Y = {4,6,7) of vertices that are not accessible from s determine a cut I' = cut(X,Y) of capacity
«(X.Y) =4+ 6+ 3+ 8+ 2 = 23. Hence, we have val(f) = 23 = cap(I'), so that f is a maximum
flow I" and is a minimum cut.

u 441

442 W PART Ill: Graph and Network Algorithms

14.2.6 Maximum Flows in 0/1 Networks: Menger's Theorem

An integer flow in a digraph D = (V, E) is a flow fsuch that f{e) is an integer for
every edgee € E.

roposition 14.2.9 [et D = (V, E) be a digraph, and let fbe any integer flow from s to ¢, where s, t €
V. Then there exists a set &7 of simple paths from s to ¢ and positive integers
{A,l P € &7} such that the number of paths containing edge e is at most ¢ (¢) and

val(f) = DA, (14.2.11) 0

PEZ”

We leave the proof of Proposition 14.2.9 as an exercise. A set of paths & and
associated positive integers {A, | P € &7’} satisfying Formula (14.2.11) can be
computed in time O(m=val(f)).

A 0/1 flow is an integer flow such that, for each edge e, f(e) is either 0 or 1.
The following result is an immediate corollary of Proposition 14.2.9.

Corollary 14.2.10 [¢(fhe any 0/1 flow from u to v. Then there exists a set &7 of pairwise edge-
disjoint paths from u to v such that

val(f) = |&7| O

When the capacities are all integers, ¢{S) is an integer at each stage of the
procedure FordFulkerson. Thus, for integer capacities, FordFulkerson generates
a maximum integer flow f. In particular, if each edge has unit capacity, then
a maximum 0/1 flow f is generated. By Corollary 14.2.10, if fis a 0/1 flow,
then there exists a set & of pairwise edge-disjoint paths from u to v such that
val(fy = |©7|. If @ is a set of pairwise edge-disjoint paths from u to v, then
2 e X pisa 0/1 flow. Thus, a set &7 of pairwise edge-disjoint paths from s to ¢ has
maximum cardinality over all such sets if and only if %, . x, is a maximum flow.

It follows that we can compute a maximum size set & of pairwise edge-
disjoint paths from s to ¢ in a given digraph D by first applying procedure
FordFulkerson to the capacitated network N = (D, ¢, s, t), where each edge ¢ has

CHAPTER 14: Matching and Network Flow Algorithms W 443

capacity c(e) = 1 to obtain a maximum flow f, and then computing a set &7 of pair-
wise edge-disjoint paths from s to ¢ such that val(f) = | 27| . Now consider the cut
I' generated by FordFulkerson. Because every edge has unit capacity, the capacity
of I' equals the size of (number of edges in) I". Since the capacity of I" equals the
value of f, it follows that the size of I equals the size of &7 which yields the clas-
sical theorem of Menger.

Theorem 14.2.11 Menger’s Theorem for Digraphs

Corollary 14.2.12

Let D = (V, E) be a digraph. Then for s, t € V, the maximum size of a set &7 of
pairwise edge-disjoint paths from s to ¢t equals the minimum size of a cut T’
separating s and ¢. a

The following corollary is the analog of Theorem 14.2.11 for graphs.

Menger’s Theorem for Undirected Graphs

Let G = (V, E) be an undirected graph. Then for s, ¢t € V, the maximum size of
a set &7°of pairwise edge-disjoint paths from s to ¢t equals the minimum size of
a cut I' separating s and t. O

14.2.7 Maximum Size Matching

Procedure FordFulkerson can be applied to obtain a maximum size matching in

a bipartite graph G. Let (X, Y) denote the associated bipartition of the vertex set
V of G. Construct a digraph D as follows. The vertex set of D consists of the ver-
tex set of G together with two new vertices s and ¢; that is,

V(D) = V(G) U {s,1}.

The edge set E(D) of D consists of pairs xy such that xy € E(G), x € X, and
y € Y, together with all pairs sx, x € X, and all pairs yt, y € ¥; that is,

E(D) = {xylxy EE(G),xE X,y € Y} U {sx|x € X} U {ytly € v}

144 M PART Ill: Graph and Network Algorithms

FIGURE 14.10

A maximum flow

in an associated
network where all
edges have capacity
1 yielding a
maximum matching
in a bipartite

graph G.

Now consider the capacitated network N = (D, ¢, s, t), where every edge ¢ has
capacity c(¢) = 1. For f; a 0/1 flow from s to ¢, let u(f) denote the set of all edges
xy of G such that xy is an edge of D and f(xy) = 1. Clearly, p(f) is a matching M in
G, and val(f) is equal to the size of M. Conversely, given any matching M of G
there is a flow fin N such that M = u(f). Let f* be the flow generated by proce-
dure FordFulkerson. Since f* is a maximum-value flow in N, p(f*) is a maximum-
size matching in G. The algorithm just described for finding a maximum-size
matching is illustrated in Figure 14.10.

X1 X2 X3 Xy Xs

Y1 V2 V3 Ya Vs

0Ny A AT

CHAPTER 14: Matching and Network Flow Algorithms W 445

““ 14.3 Closing Remarks

In addition to the Edmonds-Karp algorithm for finding a maximum flow, which
uses the Ford-Fulkerson augmenting-path method, other efficient algorithms for
finding maximum flows have been designed. These algorithms include the Dinac
maximum flow algorithm and, more recently, the preflow push algorithm de-
signed by Goldberg and Tarjan. The problem of finding a maximum flow from a
single source s to a single sink t generalizes to the problem of finding a multi-
commodity flow from a set of sources to a set of sinks. The theory of multicom-
modity flows is an active research area, with applications to such areas as routing
in communication networks and VLSI layout.

In this chapter, we discussed the Hungarian algorithm for finding a perfect
matching in bipartite graph and the Kuhn-Munkres algorithm for finding a max-
imum-weight perfect matching in a weighted bipartite graph. We also showed
how a maximum flow can be used to find a maximum-size matching in a bipar-
tite graph. Algorithms for finding maximum flows and perfect matchings in gen-
eral graphs can be found in the references.

In Chapter 24, we will present a parallel probabilistic algorithm for deter-
mining whether or not a bipartite graph contains a perfect matching.

References and Suggestions for Further Reading

Good references for network optimization algorithms, including flow and
matching algorithms:

Ahuja, R. K. Network Flows: Theory, Algorithms, and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

Gordon, M., and M. Minoux. Graphs and Algorithms (trans. by S. Vajda). New
York: Wiley, 1984.

Lawler, E. L. Combinatorial Optimization: Networks and Matroids. New York: Holt,
Rinehart and Winston, 1976.

Papadimifriou, C. H,, and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.

Tarjan, R. E. Data Structures and Network Algorithms. Philadelphia: Society for
Industrial and Applied Mathematics, 1983.

Lovasz, L., and M. D. Plummer. Matching Theory. Amsterdam: North Holland,
1986. A nice reference to results and algorithms on matchings.

146 M PART Ill: Graph and Network Algorithms

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10

Section 14.1 Perfect Matchings in Bipartite Graphs

Prove Lemma 14.1.2.
Prove Lemma 14.1.3.
Prove Lemma 14.1.4.

Show that at each stage of the procedure Hungarian, the alternating tree T
can be grown in time O(n?), so the worst-case complexity of procedure
Hungarian is O(n?).

Refine the pseudocode of the procedure Hungarian to include details for
finding the augmenting paths.

Consider the following bipartite graph G:

X1 X3 X3 Xg Xs

1 b23 Y3 Ya Vs

Starting with the given matching M = {x,y,, x,y,}, determine the perfect
matching output by Hungarian. Show each augmenting path that is
generated.

Prove Proposition 14.1.5.

Verify that the vertex weighting given by Formula (14.1.8) is a feasible
vertex weighting.

a. Verify that the vertex weighting ¢’ given by Formula (14.1.11) is a fea-
sible vertex weighting whose equality subgraph G, contains the M-
alternating tree 7.

b. Show that G, contains at least one edge {x, y}, where x € S and
YE Y =Ty(S).

Show that the worst-case complexity of procedure KuhnMunkres is O(n?).

CHAPTER 14: Matching and Network Flow Algorithms W 447

Section 14.2 Maximum Flows in Capacitated Networks

14.11

14.12
14.13

14.14

14.15
14.16

14.17

14.18

14.19

14.20

14.21

Let fbe any flow from vertex s to vertex ¢t in a digraph. Using Proposition
14.2.1, show that the flow out of s equals the flow into ¢.

Prove Proposition 14.2.2.
Verify that x given by Formula (14.2.3) is a unit flow.

Verify that the final flow f = A, Xp, oot)‘kXPk generated by the naive
algorithm illustrated in Figure 14.5 is maximal in the sense that if g is any
other flow, then g(e) < f(e) for some edge e.

Prove Lemma 14.2.7.
Prove Lemma 14.2.8.

Show that for a poor choice of augmenting semipaths S, procedure
FordFulkerson may never terminate.

Assuming that the capacities of the network are positive integers, show
that for a poor choice of augmenting paths S, the worst-case complexity
W(n, m) of procedure FordFulkerson can also be arbitrarily large.

Using the Edmonds-Karp algorithm, find a maximum flow fand a mini-
mum cut [' in the following capacitated network N:

Design and analyze an algorithm for computing a set of paths P and asso-
ciated positive integers {A, : P € P} satisfying (14.2.11).

Derive Menger’s theorem for undirected graphs (Corollary 14.2.12) from
Menger’s theorem for digraphs (Theorem 14.2.11).

148 B PART lll: Graph and Network Algorithms

14.22 Using the Edmonds-Karp algorithm, find a maximum matching in the fol-
lowing bipartite graph G by computing a maximum flow in the associated
capacitated network.

X1 X2 X3 X4 Xs

Y1 Y2 Y3 Ya Vs

14.23 Derive Konig’s theorem, which states that the size of a maximum match-
ing in a bipartite graph G equals the size of a minimum cover (a cover is a
set of vertices such that every edge of G is incident with at least one ver-
tex in the cover) from Menger’s theorem for digraphs (Theorem 14.2.11).

STRING MATCHING AND
DOCUMENT PROCESSING

Finding some or all occurrences of a given pattern string in a given text is an im-
portant and commonly encountered problem. For example, most word process-
ing software packages have built-in search-and-replace functions and spell
checkers, both of which depend on finding the occurrences of words in texts. On
the Internet, string matching is used for locating Web pages containing a given
query string. String matching and approximate string matching is also a key
technique in bioinformatics, which entails searching gene sequences for patterns
of interest.

In this chapter, we present three standard string-matching algorithms, due
to Knuth, Morris, and Pratt (the KMP algorithm); Boyer and Moore (the BM al-
gorithm); and Karp and Rabin (the KR algorithm). The KMP and BM algorithms
preprocess the pattern string so that information gained during a search for a
match of the pattern can be used to shift the pattern more than the one position
shifted by a naive algorithm when a mismatch occurs. The KR algorithm shifts
the pattern by only one position at a time, but it performs an efficient (constant-
time) check at each new position.

631

2 B PARTV: Special Topics

Often it is useful to find an approximate match in a text to a given pattern
string. An important measure of approximation is known as the edit distance be-
tween two strings, which is, roughly speaking, the minimum number of single-
character alterations that will transform one string into another. We present a
dynamic programming solution to computing the edit distance between strings.

We finish the chapter with a discussion of tries and suffix trees. When the
text is fixed, preprocessing the text as opposed to the pattern string leads to effi-
cient string-matching algorithms. This preprocessing is based on constructing a
trie and a related suffix tree corresponding to the text. Tries can be used to cre-
ate inverted indexes to strings in a large collection of data files, such as Web
pages on the Internet.

The Naive Algorithm

The string-matching problem can be formally described as follows. An alphabet is
a set of characters or symbols 4 = {a, a,, ..., a,}. A string S = S[0:n — 1] of length
non A is a sequence of n characters (repetitions allowed) from A. Such a string S
=545, .- » 5, can be viewed as an array of characters S[0:n — 1] from 4, so that
the (i + 1)* character s, in the string is denoted by S[i],i =0, ... ,n — 1. More gen-
erally, we denote the substring consisting of symbols in consecutive positions i
through j of $ by S[i:j], 0 =i = j =< n — 1. The null string, denoted by &, is the
string that contains no symbols. We let A* denote the set of all finite strings (in-
cluding the null string €) on A. The length of a string S, denoted ISl, is the num-
ber of characters in S. For a € A, we let a’ denote the string of length 7 consisting
of the single symbol a repeated i times.

Given a pattern string P = P[0:m — 1] of length m and text string T = T[0:n — 1]
of length n, where m = n, the string-matching problem is to determine whether
P occurs in T. In our string-matching algorithms, we assume that we are looking
for the first occurrence (if any) of the pattern string in the text string. The algo-
rithms can be readily modified to return all occurrences of the pattern string.

A naive algorithm for finding the first occurrence of P in T is to position P at
the start of T and simply shift the pattern P along T, one position at a time, until
either a match is found or the string T is exhausted (that is, positionn — m + 1 in
Tis reached without finding a match).

"1 function NaiveStringMatcher(P[0:m — 1], T[0:n = 1])

Input: P[0:m — 1] (a pattern string of length m)
T[0:n — 1] (a text string of length n)

Output: returns the position in T of the first occurrence of P, or —1 if P does not occur
inT

FIGURE 20.1

Action_of procedure
NaiveStringMatcher
for a sample
pattern string P[0:7]
and a text string
710:22] on alphabet
A={0, 1, 2}. For
each shift s, we
show that portion
of P that matches T,
with the first
mismatch shaded. A
match is found
beginning at the
11" character of 7.

CHAPTER 20: String Matching and Document Processing B 633

fors«0ton— mdo
ifT[s:s+m— 1] = Pthen
return(s)
endif
endfor
retun(-=1)
end NaiveStringMatcher

When measuring the complexity of procedure NaiveStringMatcher, it is nat-
ural to choose comparison of symbols as our basic operation. We can test
whether T[s: s + m — 1] = P by using a simple linear scan. Clearly, this scan re-
quires a single comparison in the best case (P[0] # T[s]) and m comparisons in
the worst case (P[i] = T[s + {],{ = 0, ..., m — 2). Because the for loop of proce-
dure NaiveStringMatcher is iterated n — m + 1 times, NaiveStringMatcher never
performs more than m(n — m + 1) comparisons. Moreover, ni(n — m + 1) com-
parisons are performed, for example, when P[0:m — 1] and T[0:n — 1] are the
strings 0" ~ '1 and 07, respectively, over the alphabet A = (0, 1}. Thus,
NaiveStringMatcher has worst-case complexity

W(m,n) = m(n —m+ 1) € 0(nm).

The action of NaiveStringMatcher is illustrated for a sample pattern and text
string in Figure 20.1.

P 0 01 0 0 0 1

T O o1 001002000100 2012220°0
s=0 0O 01 0 0

s=1 0 0

§=2 0

5=3 0 01 0 0 2 01

s=4 0 0

§=5 0

$=06 0 0 1

$=7 o 1

s=8 1

s=9 0 0 &I

s=10 0O 01 00 2 0 1

4 B PARTV: Special Topics

The Knuth-Morris-Pratt Algorithm

There is an obvious inefficiency in NaiveStringMatcher: At a given point we might
have matched a good part of the pattern P with the text T until we found a mis-
match, but we don’t exploit this in any way. The KMP string-matching algorithm
is based on a strategy of using information from partial matchings of P to not
only skip over portions of the text that cannot contain a match but also to avoid
checking characters in T that we already know match a prefix of P. The KMP
algorithm achieves O(n) worst-case complexity by preprocessing the string P to
obtain information that can exploit partial matchings.

To illustrate, consider the pattern string P = “00100201” and text string
T = “0010010020001002012200". Placing P at the beginning of 7, note that a
mismatch occurs at index position 5. The naive algorithm would then shift by
one to T[1] and simply start all over again checking at the beginning of P. This
completely ignores that we have already determined that P[0:4] = 00100 =
T[0:4]. Indeed, by simply looking at P[0:4], we see that the first position in
T where a match could possibly occur is at i = 3, because any shift of P by less
than three will cause mismatches between the relevant prefix of P[0:3] = T[0:3]
and suffix of P[1:4] = T[1:4] determined by the shift. Indeed, if we shift by one,
we would be comparing the prefix 0010 of P[0:3] with the suffix 0100 of P[1:4].
Similarly, if we shift by two, we would be comparing the prefix 001 of P[0:3]
with the suffix 100 of P[1:4]. Thus, we need to shift by three before we match
the prefix 00 of P[0:3] with the suffix 00 of P[1:4]. Hence, from the mismatch
that occurs at position i/ = 5, the next starting position where a match can occur
is at position 5 — 2 = 3. Moreover, we do not need to check the first two charac-
ters in P because they already match the first two characters of T at this new po-
sition for P. Note that next position where a match can occur was obtained by
subtracting the length of the largest prefix of P[0:3] that was also a suffix of P[1:4]
from the position where the mismatch occurred.

More generally, suppose we have detected a mismatch at position i in T, where
T[i] # P[j], but we know that the previous j characters of T match with P[0:j — 1].
Also, suppose d;is the length of the longest prefix of P[0:;j — 2] that also occurs as
a suffix of P[1:j — 1]. Then the next position where a match can occur is at position
i — d;. Moreover, to see whether we actually have a match starting at position
i — d]., we can avoid checking the characters that we already know agree with
those in T—that is, the characters in the substring T[s — dj:i — 1]. Hence, we need
only check the characters in the substring T[i:i + m — d—1] with those in the sub-
string P[dj: m — 1] to see if a match occurs (see Figures 20.2 and 20.3).

FIGURE 20.2

The state of T when
T[i] # P[j], but
Tli—=j:i=1]=
P[0:j—1]andd.is
the length of the
longest prefix of
P[0 :j — 2] that
agrees with a suffix
of P[1:j—1].

FIGURE 20.3

Interpretation of
Figure 20.2 for
specficPand T.

CHAPTER 20: String Matching and Document Processing B &35

position i—j i— d/’ i—1 i
T .. P[0} P[1] ... P[j = d] P[j = d,+1] ... P[j = 1] T[{]# P[j] ...
Il Il 1l
P[0] P[1] ... Pld,—1] P[d] ...
T 0010010020001002012200 0010010020001002012200
P 00100201 00100201

5 — 2 is next index where a match could
occur (it doesn’t occur there)

mismatch ati=j=5

By preprocessing the string P, we can compute the array Next[0:m — 1],
where Next[j] is the length of longest prefix of P[0 : j — 2] that agrees with a suf-
fix of P[1:j— 1],j = 2, ..., m. We set Next[0] = Next[1] = 0. For example, for the
string P = “00100201"”, we have the corresponding array Next[0:7] = [0, 0, 1,0,
1,2,0, 1]. Then for this P and the T discussed earlier, Figure 20.3 shows the situ-
ation described in Figure 20.2 fori = 5,j = 5, and dj = 2.

The following key fact summarizes our discussion and is the key to the effi-
ciency of the KMP string matching algorithm.

fs0 Suppose in our scan of T looking for a match with P that we have a mismatch at position s
in 7, where TLil # PLj]1,but PIO: j — 11 = TILi — j:i — 11. Setting d/ = Nextlj], the next po-
- sition where a match of P can occur is at position / — d,. Moreover, we need only check the
substring T1i: /i + m — d, — 11 with the substring Pld;: m — 1] to see if a match occurs there.

In the pseudocode KMPStringMatcher, we look for matches using a variable i
that scans the text T from left to right one position at a time, and a second vari-
able j that scans the pattern P in a slightly oscillatory manner, as dictated by the
key fact (see Figure 20.4). The variable 7/ never backs up, so that when a match
occurs, it is actually at position i — m + 1 (in other words, s is the position of the
last character in P corresponding to the matching). The pseudocode is elegant
but somewhat subtle, because when a mismatch P[j] # T[i] occurs, there is no

6 B PARTV: Special Topics

need to explicitly place the pattern P at the next position i — Next[j]; we merely
need to check T[i: i + m — Next[j] — 1] against P[Next[j] : m — 1] to see if a
match of P occurs at i — Next[j]. We perform this check by continuing the scan of
T by i and replacing j by Next[j] before continuing the scan of P by j.

sz eooooc function KMPStringMatcher(P[O:m — 1], T[0:n — 1])
: Input: P[O:m — 1] (a pattern string of length m)
T10:n — 1] (a text string of length n)
Output: returns the position in T of the first occurrence of P, or —1

if P does not occurin T
i«0
: j«O

//i runs through text string T
//j runs through pattern string P in manner
dictated by key fact

CreateNext(P[0:m — 1], Next[O:m — 1])

while /i < n do
if P[j] = T[/] then
: ifj=m — 1 then
: return((—m + 1)
endif
fe—i+1
je—j+1
else
J Next[j]

if j = O then
if T[i] # P[O] then
fe—i+1
endif
endif
: endif
endwhile
return(—1)
end KMPStringMatcher

Creeesew

»
3306773133332 %195233232034697330808¢ 2059

//match found at position i — m + 1

//continue scan of T
//continue scan of P

“/1PGY - T

//continue looking for a match of P which
now could begin at position i — Next[/]
inT

//no match at position /

................... “rresvesrITIsETIINEIBIBIIICRIOD G

In Figure 20.4, we illustrate the action of KMPStringMatcher for the pattern
string P and text string T discussed earlier, by tracing the values of s and j for each
iteration of the while loop. While NaiveStringMatcher used 37 comparisons to
find a match, KMPStringMatcher only used 21 (not counting the comparisons

made by CreateNext in preprocessing P).

CHAPTER 20: String Matching and Document Processing B 637

FIGURE 20 iteration ! ! !

RE 20.4 i 0123455678 910101111121314151617
(a) A trace of the j 0123452345671 212345%67
values of i and j
for each iteration (a)

of the while
'OOP'”A’;’;’;ﬁ’gz"r”f’g; T 0010010020001002012200
P = “00100201" P OO'ggfgézol
and T =
“00100100200010 00100201
02012200". 00100201 match
Positions marked
with ! are where (b)

Tl # P(jl andjis
reassigned with the
value Next{j].

(b) The implicit
shifting of P until a
match is found.

KMPStringMatcher has linear complexity because of the following key fact.

The while loop in KMPStringMatcher is executed at most 2n times.

To verify the key fact, note that the loop executes n times when i is incre-
mented within the loop. If i is not incremented in the loop, then the pattern P is
implicitly shifted to position i — Next[j], which is at least one more than the last
implicit placement of P. Therefore, this implicit shift can happen at most n times,
which verifies the key fact.

It remains to design the algorithm CreateNext. Again, there is a naive algo-
rithm NaiveCreateNext that computes each value of Next[i] from scratch, without
using any of the information gleaned from computing Next[k], k < i. It is easy to
see that the worst case of NaiveCreateNext is in Q(m?). However, similar to the de-
sign of KMPStringMatcher, using information gleaned about Next[i — 1] leadsto a
more efficient way to compute Next[i] and yields an O(m) algorithm. We leave
the complexity analysis and correctness of CreateNext to the exercises.

smempoecooo function CreateNext(P[O:m — 1], Next[O:m — 1])
: Input: P[0:m — 1] (a pattern string of length m)
: Output: Next[0:m — 1] (Next[f] is length of longest prefix of P [0:i — 2] that is a suffix
of P[1:i=1],i=0,....,m—1)

B PARTV: Special Topics

Next[0] « Next[1] « O
<2
je0
while i < m do
if P[j] = P[i — 1] then
: Next[l] «j + 1
< fe—i+1
Jej+1
else
if j > 0 then
j & Next[j — 1]
else
Next{i] « O
i+ 1
endif
endif
: endwhile
end CreateNext

Similar to the KMP algorithm, the BM algorithm uses preprocessing of the pattern
string to facilitate shifting the pattern string, but it is based on a right-to-left scan of
the pattern string instead of the left-to-right scan made by the KMP algorithm. We
present a simplified version of the BM algorithm that compares the rightmost
character of the pattern with the character in the text corresponding to the current
shift of the pattern and uses this comparison to determine the next pattern shift (if
any). The full version of the BM algorithm is developed in the exercises.

In the BM algorithm, the pattern P[0:m — 1] is first placed at the beginning
of the text, and we check for a match by scanning the pattern from right-to-left.
If we find a mismatch, then we have two cases to consider, depending on the
character x of the text in index position m — 1 that is compared against the last
character of P. If x does not occur in the first m — 1 positions of P, then clearly we
can shift P by its entire length m to continue our search for a match. If x does
occur in the first m — 1 positions of P, then we shift P so that the rightmost oc-
currence of xin P[0:m — 1] is now at index position m — 1 in the text, and we re-
peat the process of scanning P from right-to-left at this new position. Again, if we
find a mismatch, we shift the pattern again based on the text character that was
aligned at the rightmost character of P. Also, in this simplified version, we ignore
any information gleaned about partial matchings in our previous placement of P
(this information is used in the full version of the BM algorithm).

FIGURE 20.5

Action of simplified
BM algorithm, with
positions where
mismatches first
occur in the right-
to-left scan of

the pattern
indicated by !.

CHAPTER 20: String Matching and Document Processing B 639

The shifts associated with the two cases can be computed easily by prepro-
cessing the pattern string P. In the following pseudocode for CreateShift, for con-
venience, we assume that the array Shift is indexed by the alphabet A from
which the characters for the pattern P and text T are drawn.

;. procedure CreateShift(P[0:m — 1], Shift[0: |A| — 1])

¢ Input: P[O:m — 1] (a pattern string)
Output: Shift{0: |A| — 1] (the array of character-based shifts)

: fori< Oto|Al — 1do //initialize Shift to all m's.

: Shift[i] = m

: endfor

fori«< Otom — 2 do //compute shifts based on rightmost
: occurrence of P[i] in lO:m — 1]
ShiftlPll] =m —i— 1

: endfor

end CreateShift

For example, suppose P[0:8] is the string “character”. Then the values for the
shifts of the characters e, t, c,a,r,hare 1, 2, 3, 4, 5, 7, respectively. The shift value
for all other characters is 9. In Figure 20.5, we illustrate how the simplified BM
algorithm uses these shifts to find a match of the pattern “character” in the text
“BMmatcher_shift_character_example”.

The worst-case performance of the simplfied BM algorithm is the same as
that of the naive algorithm, ®(nm) (see Exercise 20.8). However, it can be shown
that its average behavior is linear in # and often works as well as the full version
of the BM algorithm. The full version of the BM algorithm works identically to
the simplified version when there is a mismatch between the rightmost charac-
ter of the pattern and the text character corresponding to this rightmost charac-
ter in the current shift of the pattern. If these two characters agree, however, the
full version acts differently by exploiting the information gained by the matching
of a suffix of P with the corresponding characters in the text for the given place-
ment of P (see the discussion preceding Exercise 20.9).

! ! !
BMmatcher_shift_character

_example
character Shift(r)=5
character Shift(r)=9
character Shift(r)=2

character match

‘0 W PARTV: Special Topics

The Karp-Rabin String-Matching Algorithm

In this section, we assume without loss of generality that our strings are chosen
from the k-ary alphabet A = {0,1, ..., kK — 1}. Each character of A can be thought
of as a digit in radix-k notation, and each string S € A* can be identified with the
base k representation of an integer S. For example, when k = 10, the string of
numeric characters “6832355” can be identified with the integer 6832355. Given
a pattern string P[0:m — 1], we can compute the corresponding integer using m
multiplications and m additions by employing Horner’s rule.

P=Pm- 1]+ k(Plm — 2] + (20.4.1)
k(Plm — 2] + k(Plm — 3] + --- + k(P{1] + kP[0])...))

Given a text string T[0:n — 1] and an integer s, we find it convenient to de-
note the substring T[s,s + m — 1] by T,. A string-matching algorithm is obtained
by using Horner’s rule to successively compute Ty, T}, T, ... , where the compu-
tation continues until P = T, for some s (a match) or until we reach the end of
the text T. Of course, this is no better than the naive string-matching algorithm.
However, the following key fact is the basis of a linear algorithm.

E Given the integers 7,_, and k!, we can compute the integer T, in constant time.

K

The key fact follows from the following recurrence relation:

T,=k(T,_, - kK" 'T[s—1]) + Ts + m—1] s=1,..,n — m. (20.4.2)

For example, if k = 10, m = 7, T,_, = 7937245, and T, = 9372458, then re-
currence relation (20.4.2) becomes

F, = 10[7937245 — (1000000 X 7)] + 8 = 9372458.

The constant ¢ = k™~ !in (20.4.2) can be computed in time O(logm) using the
binary method for computing powers. Once c is computed, it does not need to be
recomputed when Formula (20.4.2) is applied again. Thus, assuming that the
arithmetic operations in (20.4.2) take constant time, each application of (20.4.2)
takes constant time. Hence, the n — m + 2 integers P and 5":, s=0,1,..,n—m,
can be computed in total time O(n).

s4sr2s00es
*

CHAPTER 20: String Matching and Document Processing 641

The problem with the preceding approach is that the integers P and
i, §s=0,1,..,n — m, may be too large to work with efficiently, and the as-
sumption that Formula (20.4.2) can be performed in constant time becomes
unreasonable. To get around this difficulty, we reduce these integers modulo
q for some randomly chosen integer g. To avoid multiple-precision arithmetic,
q is often chosen to be a random prime number such that kq fits within one
computer word.

We now let

P = Pmod 4, (20.4.3)
T2 = T, mod g.

The values T, and P can be computed in time O(n) using exactly the same
algorithm described earlier for computing T, and P, except that all arithmetic
operations are performed modulo g. Clearly, if 7,9 # P then T, # P. However,
if ,®) = P, we are not guaranteed that P = T,. When a shift s has the property
that T, = P& but T, # P we have a spurious match. However, for sufficiently
large g, the probability of a spurious match can be expected to be small. We
check whether a match is spurious by explicitly checking whether T, = P, and
continuing our search for a match if T, # P.

function KarpRabinStringMatcher(P[0:m — 1], T[0:n — 1], k,)

: Input: P[O:m — 1] (a pattern string of length m)

T[0:n — 1] (a text string of length n)

k (A is the k-ary alphabet {0, 1, ...,k — 1})

g (a random prime number g such that kq fits in one computer word)

1 Output: returns the position in T of the first occurrence of P, or —1 if P does not occur
: inT

Ce k™~ "modqg

P@ 0

To@ «0

fori0tom — 1do //apply Horner's rule to compute
P and T—o(q)

sececna

: P9 (kP9 + P[j]) mod g
To@ (kxT,@ + T[i]) mod q
endfor
fors <~ O0ton — mdo
if s > 0 then
T, 9D (k(T,_,@ — T[s — 1]*c) + T[s + m—1]) mod g
endif

teunEnneve

642 M PARTV: Special Topics

if 7,9 = P then
if T, = Pthen //match is not spurious
return(s)
endif
endif
endfor
return(0)

Figure 20.6 illustrates the action of function KarpRabinStringMatcher for a
sample pattern string P[0:6] = “6832355”, text string T[0:20] = “895732102583
2355440317, and prime modulus g = 11. To illustrate the calculations of T,'" in
Figure 20.6, we show how KarpRabinStringMatcher computes T;'Vfrom T,'V.
Using Formula (20.4.2) and doing all arithmetic modulo ¢ = 11, we have

7321026

i

10(5732102 — 1000000 X 5) + 6 (mod 11)
10(2 -1X5) +6 (modl1l)
9 (mod 11).

Because KarpRabinStringMatcher terminates after finding the first nonspuri-
ous match, the worst-case performance occurs for an input pair (P, T), where the
pattern string P occurs precisely at the end (s = n — m) of the text string T. With
g chosen at random, we can expect different behavior for different choices of
g, so that we now consider the expected number 7., (P, T)of string comparisons
made by the algorithm. For s # n — m, we make the assumption that T, takes
on a particular value i € {0, 1, ..., ¢ — 1} with equal probability 1/q. Because a
spurious match occurs only when T, = P49 s =0, ...,n — m — 1, it follows that

FIGURE 20.6 f[O:ZO] 895732102683235544031
Action of P[0:6] 6832355
KarpRabinString-

Matcher fora s T, Tt
samplepattern 0 8 9 5 7 3 2 1 10
string P[0:6], text 1 9 5 7 3 2 10 9
string 7(0:20], and > 57 3 210 2 2 Spurious match
prime modulus 3 7 3 2 1 0 2 6 9
.................... a-11 321026 8 :
5 21 0 2 6 8 3 .0
6 1 0 2 6 8 3 2 4
7 0 2 6 8 3 2 3 0
8 2 6 8 3 2 3 5 5
9 6 8 3 2 3 5 5 2 Match: return (9)

CHAPTER 20: String Matching and Document Processing Il 643

a spurious match occurs at shift s with probability 1/g. Let r denote the expected
number of spurious matches. A test for a spurious match involves m comparisons
in the worst case, and r + 1 such tests are performed (including the test at shift
s = n — m); thus, the expected performance 7, (P, T)of KarpRabinStringMatcher
for the input (P, 7T) is

Texp(P,T) = (r+ 1)m+ (n—m+ 1). (20.4.4)
The value r is the expectation of the binomial distribution with n — m trials

(shifts), where success (a spurious match) occurs with probability 1/9. Thus,
from Formula (E.3.9) of Appendix E, we have

n—m
P .

r= (20.4.5)

Substituting Formula (20.4.5) into Formula (20.4.4), we obtain

- m

Texp(P, T) = (” + l)m +(n—-m+1). (20.4.6)

If we assume that g is bounded above by a fixed constant, then KarpRabin-
StringMatcher achieves a worst-case complexity in ®(nm), which is no better
than the naive algorithm. However, in practice, it is reasonable to assume that g
is much larger than m, in which case KarpRabinStringMatcher has complexity in
O(n). The Karp-Rabin string-matching algorithm has the additional feature that
it is readily adapted to the problem of finding m X m patterns in n X n texts (see
Exercise 20.16).

ERE

& 20.5 Approximate String Matching
In practice, there are often misspellings when creating a text, and it is useful
when searching for a pattern string P in a text to find words that are approxi-
mately the same as P. In this section, we formulate a solution to this problem
using dynamic programming. We have already discussed a solution to a similar
problem in Chapter 9—namely, the problem of finding the longest common sub-
sequence of two strings.

We first consider the problem of determining whether a pattern string

P[0:m — 1] is a k-approximation of a text string T[0:n — 1]. Later, we look at the
problem of finding occurrences of substrings of T for which P is a k-approximation.
The pattern string P is a k-approximate matching of the text string T if T can be con-
verted to P using at most k operations involving one of the following

4 MW PARTV: Special Topics

1. Changing a character of T (substitution)
2. Adding a character to T (insertion)
3. Removing a character of T (deletion)

For example, when P is the string “algorithm”, one of the following might occur:

1. elgorithm — algorithm (substitution of e with a)
2. algorthm — algorithm (insertion of letter i)
3. lalgorithm — algorithm (deletion of letter [)

In this example, each string T differs from P by at most one character. Unfor-
tunately, in practice, more serious mistakes are made, and the difference in-
volves multiple characters. We define the edit distance D(P, T) between P and T to
be the minimum number of operations of substitution, deletion, and insertion
needed to convert T to P. For example, the strings “algorithm” and “logarithm”
have edit distance 3.

logarithm — alogarithm — algarithm — algorithm

Let D[i,] denote the edit distance between the substring P[0:i — 1] consisting
of the first 7 characters of the pattern string P and T[0:j — 1] consisting of the first
j characters of the text string T. If P[{] = T[j], then D[i,j] = D[i — 1,j — 1]. Other-
wise, consider an optimal intermixed sequence involving the three operations
substitution, insertion, and deletion that converts T[0:j — 1] into P[0:i — 1]. The
number of such operations is the edit distance between these two substrings. Note
that in transforming T to P, inserting a character into T is equivalent to deleting a
character from P. For convenience, we will perform the equivalent operation of
deleting characters from P rather than adding characters to T. We can assume
without loss of generality that the sequence of operations involving the first i — 1
characters of P and the first j — 1 characters of T are operated on first. To obtain a
recurrence relation for D[, j], we examine the last operation. If the last operation
is substitution of T[j] with P[i] in T, then D[{,j] = D[— 1,j — 1] + 1. If the last op-
eration is the deletion of P[i] from P, then D[i, j] = D[{ — 1,j] + 1. Finally, if the
last operation is deletion of T[j] from T, then D[i,j] = D[i,j — 1] + 1 The edit dis-
tance is realized by computing the minimum of these three possibilities. Observing
that the edit distance between a string of size i and the null string is 7, we obtain the
following recurrence relation for the edit distance:

D[i,j] = {D[z‘ - 1,j-1] if A{i] = 1{j),
’ min{D[i — 1,j — 1]+ 1, D[i — 1,j] + 1, D[i, j — 1] + 1}, otherwise.
init. cond. D[0,{] = D[;,0] = i.

(20.5.1)

CHAPTER 20: String Matching and Document Processing Bl 645

The design of a dynamic programming algorithm based on this recurrence and
its analysis is similar to that given for the longest common subsequence problem
discussed in Chapter 9, and we leave it to the exercises. We also leave as an exer-
cise designing an algorithm for finding the first occurrence or all occurrences of a
substring of the text string T that is a k-approximation of the pattern string P.

8% 20.6 Tries and Suffix Trees

By preprocessing the pattern string, the KMP and BM algorithms achieved im-
provement over the naive algorithm. Another approach that can be applied
when the text is fixed is to preprocess the strings in the text using a data struc-
ture such as a tree. In this section, we discuss two important tree-based data
structures, tries and suffix trees, for preprocessing the text to allow for very effi-
cient pattern matching and information retrieval.

20.6.1 Standard Tries

Consider a collection C of strings from an alphabet A of size k, where no string in S is
a prefix of any other string. We can then construct a tree T whose nodes are labeled
with symbols from A, such that the strings in C correspond precisely to the paths in
T from the root R to a leaf node as follows. We construct T'such that the labels of the
children of each node are unique and occur in increasing order as the children are
scanned from left to right. Starting with the tree T consisting of a single root node
R, we inductively incorporate a new string S[0:p — 1] from Cinto T as follows. If no
child of the root R is labeled S[0], then we simply add a new branch at the root
consisting of a path of length p whose node at level i + 1 is labeled S[i],i =0, ...,
p — 1. Otherwise, we follow a path from the root by first following the edge from
the root to the unique child of the root labeled S[0], then following the edge from
that node to its child labeled S[1], and so forth until we reach a node v at level i la-
beled S[i — 1] having no child (at level i + 1) labeled S[i/]. We then add a new
branch at v consisting of a path of length p — i — 1, such that node in the path at
level j (in the tree) is labeled S[j — 1],j =i+ 1,...,p — 1. A tree T constructed in
this way is called a standard trie for the string collection C. Figure 20.7 shows a stan-
dard trie for the sample string collection C = {“internet”, “interview”, “internally”,
“algorithm”, “all”, “web”, “world”} .

The leaf nodes of the trie T can be used to store information about the string
S corresponding to the leaf, such as the location in the text of P, the number of
occurrences of P in the text, and so forth. The term trie comes from the word re-
trieval, because a trie can be used to retrieve information about P. In addition to
pattern matching, tries can be used for word matching, where the pattern is
matched only to substrings of the text corresponding to words. This is useful for
creating a forward index of words in a web document.

646 M PARTV: Special Topics

FIGURE 20.7

Standard trie for the
collection of strings
C = {"internet”,
“interview"”,
“internally”,
“algorithm”, “all”,
“web”, “world"}.

It is immediate that a standard trie T has the following three properties: (1)
Each nonleaf node has at most k children, where k is the size of the alphabet 4;
(2) the number of leaf nodes equals the number of strings in S; and (3) the depth
of T equals the length of the longest string in S. The following proposition about
the space requirements for storing T is easily verified (see Exercise 20.22).

Proposition 20.6.1 1et T be a standard trie for a collection C of strings, and let s denote the total

length over all the strings in C. Then the number of nodes N(T) of T satisfies
N(T) € 0s).

We can efficiently test whether a given pattern string P[0:m — 1] belongs to
C by scanning the string P and successively following the child in the trie labeled
with the current symbol that has been scanned until either no child of the
current node has a label equal to the symbol or a leaf node labeled with the last
symbol of P has been reached. Because we have made the assumption that
no string in C is a prefix of any other string, it follows that the pattern string

FIGURE 20.8

Compressed trie for
the same string set
C = {"internet”,

“interview”,
“internally”,

“algorithm”, “all”,

“web

"
’

"

world"} of
Figure 20.7

CHAPTER 20: String Matching and Document Processing B 647

P[0:m — 1] belongs to C if and only if a leaf node labeled with the last symbol in
Pis reached. Because each node has at most k children, this procedure has com-
plexity O(km). Thus, if the alphabet has constant size, the complexity of search-
ing for P is linear in its length.

20.6.2 Compressed Tries

The O(s) space requirement of a standard trie T can be reduced if there are nodes in
T that have only one child. Consider any such node v, and let ¢ denote its only
child. Let x and y denote the labels of v and c, respectively, and let # denote the par-
ent of v. Then the path generated by a string S from C that contains v must also
contain c. Thus, without affecting our ability to match S, we can compress the trie
by removing v, making c a child of #, and replacing the label y of ¢ with the string xy.
This operation can be repeated for other nodes having only one child, except that
x and y may themselves be strings instead of just single symbols. After repeatly per-
forming this compression operation until all internal nodes have at least two chil-
dren, we obtain a tree labeled with strings, which we call the compressed trie for S. A
compressed trie is also called a PATRICIA (practical algorithm to retrieve informa-
tion coded in alphanumeric) tree . Note that the compressed trie for S can also be
obtained by replacing every path uu, ... u,v from a node u to a node v in T whose
internal nodes u,, u,, ..., 4, are bivalent (have exactly one child), but whose end
nodes u and v are not, with the edge uv and replacing the label y of v with the string
XX, ... X, ¥, where x; denotes the label of u,, i = 1, ... , k. The compressed trie for the
trie given in Figure 20.7 is shown in Figure 20.8.

“al” “inter” “w”
”gorithm" ul" unn ”View” ueb" uorld”
uallyn “et”

The following proposition about the number of nodes of a compressed trie T
is easily verified.

8 M PARTV: Special Topics

oposition 20.6.2 Let T be a compressed trie for a collection C of ¢ strings. Then the number of

FIGURE 20.9

(a) Suffix tree
for string
T = "babbage”.

nodes N(T) of T satisfies
N(T) € O(c).

Comparing this result with Proposition 20.6.1, we see that compressing the
standard trie has reduced the space requirements from O(s) to O(c). This becomes
significant when the strings in C are long. A compressed trie can be created di-
rectly from the set of strings C without first constructing a standard trie for C and
then compressing it. We leave as an exercise designing an algorithm for con-
structing a compressed trie directly from C. Using a slight modification of the
technique used for a standard trie, we can search a compressed trie to efficiently
test whether a given pattern string belongs to C (see Exercise 20.24).

20.6.3 Suffix Trees

A suffix tree (also called a suffix trie) with respect to a given text string T is a com-
pressed trie for the string collection C consisting of all suffixes of T. This definition
requires that no suffix be a prefix of any other suffix. For strings in which this oc-
curs, we simply add a special symbol to the end of every suffix in C. Suffix trees
are useful in practice because they can be used to determine whether a pattern
string P is a substring of a given text string T. The suffix tree for the string T =
“babbage” is shown in Figure 20.9(a). Because the string label on each node cor-
responds to a substring T[i:j] of T, it can be represented more compactly using
just the pair (i,). Figure 20.9(b) shows the more compact representation of the
node labels for the suffix tree in part (a).

Given a pattern P[0:m — 1] in string P, it is easy to design an O(km) algorithm
that traces a path in the suffix tree corresponding to test T to determine whether
P occurs as a substring of T. We leave the design of such an algorithm as an
exercise.

”

” un”

a “bage”

ubbage” uge

“bbage” “ge

(a)

FIGURE 20.9
Continued.

(b) more compact
representation of
the node labels for
the suffix tree in
part (a).

CHAPTER 20: String Matching and Document Processing B 649

(1,1) (0,0) (6.6) (5.6)
(2.6) (5.6) (1,1) (3.6)
(2,6) (5.6)

(b)

String and pattern matching have been areas of interest for a long time, and
string algorithms have recently received increased attention because of their
role in Web searching as well as in computational biology. In this chapter, we
have introduced several of the most important string-matching algorithms, but
the subject is vast. The interested reader should consult the references for more
extended treatments of this important topic and its applications.

References and Suggestions for Further Reading

Books on string matching:

Aoe, J. Computer Algorithms: String Pattern Matching Strategies. Wiley-IEEE Com-
puter Society Press, 1994.

Crochemore, M. Text Algorithms. New York: Oxford University Press, 1994.

Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge: Cambridge University Press, 1997.

Navarro, G., and Raffinot, M. Flexible Pattern Matching in Strings. Cambridge:
Cambridge University Press, 2002.

Stephen, G. A. String Searching Algorithms. London: World Scientific Publishing,
1994.

Chen, D., and Cheng, X., eds. Pattern Recognition and String Matching. Dordrecht,
The Netherlands: Kluwer Academic Publishers, 2002. A collection of 28
articles contributed by experts on pattern recognition and string matching.

0 MW PARTV: Special Topics

Survey articles on string matching:

Baeza-Yates, R. A. “Algorithms for String Matching: A Survey.” ACM SIGIR
Forum 23 (1989): 34-58.

Navarro, G. “A Guided Tour to Approximate String Matching.” ACM Computing
Surveys 33, no. 1 (2001): 31-88.

Section 20.2 The Knuth-Morris-Pratt Algorithm

20.1. Suppose P[0:m — 1] and T[0:n — 1] are the strings 0" ~ !1 and 0" that were
the worst-case strings of length m and » for NaiveStringMatcher.

a. Show that P[0:m — 1] and T[0:n — 1] are best-case strings of length m
and n for KMPStringMatcher for the case where P does not occur in T.

b. Find worst-case strings P[0:m — 1] and T[0:n — 1], respectively, for
KMPStringMatcher, and thereby determine W(m,n) for KMPString-
Matcher.

20.2 Compute the array Next[0:10] for the pattern string P = “abracadabra”.

20.3 Trace the action of KMPStringMatcher as in Figure 20.4 for the pattern
string P = “cincinnati” and the text string T = “cincinatti_is_cincin-
nati_misspelled”.

20.4 Verify the correctness of the algorithm CreateNext.
20.5 Show that CreateNext has O(m) complexity.

20.6 Write programs implementing NaiveStringMatcher and KMPStringMatcher,
and run them for various inputs for comparison.

Section 20.3 The Boyer-Moore String-Matching Algorithm

20.7 Design and analyze pseudocode for the simplified BM algorithm.

20.8 Show that the worst case of the simplified BM algorithm is as bad as the
naive algorithm.

Exercises 20.9 through 20.14 involve the full version of the BM algorithm. As
mentioned, when a mismatch occurs in the last position of the pattern string,
the full version works the same way as the simplified version using the value
Shift[c] to shift the pattern based on the mismatched text character c. The differ-
ence arises when we have matched the last k > 0 characters of the pattern
string P, called a good suffix (of length k), before a mismatch occurs with a char-
acter ¢ from the text. We then shift the pattern by the larger of the following
two shifts, called the bad character shift s, and the good suffix shift s,, respectively.
The bad character shift s, is simply defined as s, = max(Shift[c] — k, 1}. We can
shift P by s, and not miss any matches, for reasons similar to those used when
comparing against the last character in P.

CHAPTER 20: String Matching and Document Processing B 651

The good suffix shift s, is also based on reasoning similar to that used to
create the array Shift, but where we consider suffixes of P instead of a single
character. More precisely, we look for the rightmost repeated occurrence of the
good suffix of length k (if any) to shift this occurrence by the amount s, re-
quired to bring it to the end of the pattern. Of course, the character preceding
this repeated occurrence (if any) must be different from the character preced-
ing the good suffix; otherwise, a mismatch will occur again. Even when such a
repeated occurrence of the good suffix does not happen, we might not be able
to shift the pattern by its entire length m because we might miss a match that
might occur when a suffix of length j of a good suffix of length k, 0 <j <k,
matches a prefix of length j of P. In the latter case, we shift by the amount
required to bring the prefix to the end of the pattern P. For example, if
P =1011101001, then the good suffix shifts for k = 1, ..., 8, which are given
by 5,3,7,7,7,7,7,7, respectively.

20.9 Design and analyze pseudocode for an algorithm that creates the good-
suffix shift values for a given input pattern P[0:m — 1].

20.10 Compute the bad-character shifts and the good-suffix shifts for the fol-
lowing patterns:

a. P="01212121"
b. P=“001200100"

20.11 Trace the action of the full version of the BM algorithm for the pattern P =
“amalgam” and text T = “ada_gamely_amasses_amalgam_information”.

20.12 Design and analyze pseudocode for the full version of the BM algorithm.

20.13 Write programs implementing the simplified and full versions of the BM
algorithm, and compare their performance for various inputs.

20.14 Compare the performance of the programs written in the previous exer-
cise to programs implementing NaiveStringMatcher and KMPStringMatcher
(see Exercise 20.6) for various inputs.

Section 20.4 The Karp-Rabin String-Matching Algorithm

20.15 Trace the action of KarpRabinStringMatcher for the alphanumeric strings
P=“108"and T = “002458108235” for the following values of g:
a.qg=17
b.g=11

HEURISTIC SEARCH STRATEGIES:
A*-SEARCH AND GAME TREES

heuristic: ... providing aid or direction in the solution of a problem, but
otherwise unjustified or incapable of justification. ... of or relating to ex-
ploratory problem-solving techniques that utilize self-learning tech-

niques to improve performance.
Webster’s New Collegiate Dictionary

Search strategies such as backtracking, LIFO and FIFO branch-and-bound,
breadth-first search, and depth-first search are blind in the sense that they do
not look ahead, beyond a local neighborhood, when expanding a node. In this
chapter, we show how using heuristics can help narrow the scope of otherwise
blind searches. We introduce a type of heuristic search strategy known as
A*-search, which is widely used in artificial intelligence (AI). We then discuss
strategies for playing two-person games. The alpha-beta heuristic for two-
person games is based on assigning a heuristic value to positions reached by
looking ahead a certain fixed number of moves. Then an estimate for the best

715

16

B PARTV: Special Topics

move is obtained by working back to the current position using the so-called
minimax strategy.

Artificial Intelligence: Production Systems

The subject of Al is concerned with designing algorithms that allow computers
to emulate human behavior (see Figure 23.1). The major areas of Al include
natural language processing, automatic programming and theorem proving,
robotics, machine vision and pattern recognition, intelligent data retrieval, ex-
pert systems, and game playing. Certain activities that are child’s play, such as
using a natural language, present theoretically and computationally difficult
problems that are beyond the reach of current technology. It is true that voice
recognition computer programs are currently available that can properly inter-
pret a limited set of spoken instructions. However, the time when we can carry
out ordinary conversations with a computer, such as those between the space-
ship crew and the computer Hal in the movie 2001: A Space Odyssey, has yet to
be fully realized.

Many problems in Al involve production systems. An Al production sys-
tem is characterized by system states (also called databases), production rules that
allow the system to change from one state to another, and a control system that
manages the execution of the production rules and allows the system to evolve
according to some desired scenario. For example, a system state might be
the position of a robotic arm. A production rule allows the robotic arm to
change its position. A control strategy is an algorithm that controls the move-
ment of the arm from a given initial position to a final goal position. Here
again, a two-year-old child can move his or her arms without much thinking,
but designing an algorithm that allows a robot to accomplish the same thing is
a complicated task.

Given any Al production system, there is a positive cost associated with the
application of each production rule. A production system can be modeled as a
positively weighted digraph, called a state-space digraph, where a node in the
graph is the state of the system, and a directed edge from node v to node w is as-
signed the cost Cost(v, w) of the production rule that transforms state v into state
w. Given some initial state r (in which the root vertex is in the directed graph),
we are interested in whether or not we can find a directed path from 7 to a goal
state. A control system for the problem is then simply a search strategy for reach-
ing a goal state starting from 7. As usual, we wish to find control systems that
perform searches efficiently. '

FIGURE 23.1

© Sidney Harris.
Reprinted with
permission. All rights
reserved.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees W 717

1T FIGURES. \f THERE'S ARTIFICIAL INTELLIGENE,
TPERE S BOUND To BE ARTIFICIAL STUPIDITY.™

8-Puzzle Game

We illustrate the ideas of an AI production system by the 8-puzzle game. The
8-puzzle game is a smaller version of the 15-puzzle game invented by Sam Lloyd
in 1878. In the 8-puzzle game, there are eight tiles numbered 1 through 8 occu-
pying eight of the nine cells in a 3 X 3 square board. The objective is to move
from a given initial state in the board to a goal state. The only moves (production
rules) allowed are to move a tile into an adjacent empty cell. It is convenient to
characterize such a move as a movement of the empty cell. Thus, there are ex-
actly four rules for moving the empty cell: move left, move right, move up, move

8 B PARTV: Special Topics

FIGURE 23.2

A portion of the
state-space graph
for the 8-puzzle
game.

down. Of course, the only states allowing all four rules to be applied are when
the empty cell is in the center. When the empty cell is at a corner location in the
board, then only two of the four rules can be applied. The remaining locations
allow the application of three of the four rules.

We will let D be the state-space digraph whose vertex set consists of all pos-
sible board configurations in the 8-puzzle game. In D, a directed edge (v, w) ex-
ists if a move in the game transforms v into w. Note that if (v, w) is an edge, then
(w, v) is also an edge. Thus, D can be considered a state-space graph, where the
two directed edges (v, w) and (w, v) are replaced with the single undirected edge
{v, w}. A portion of the state-space graph is shown in Figure 23.2. Suppose we
use the breadth-first search control strategy to search for a path leading from the
initial state to the goal state. We assume that our control strategy always gener-
ates the children of a node in the following order: move left, move right, move
up, move down. In Figure 23.3, we have taken an initial position that is only
four moves from the goal state. However, 28 states (not counting the initial
state) are generated by breadth-first search.

214(3 2 3 2103 1]12(3 11213
1 6 1{4]6 1 6 7
7(5|8 715(8 715(8 7158 5|18
2(4|3 23 21316 1123 1{2]3
6 1 6 1[4 4 6 416
715(8 518 7158 7(5|8 5 8
4|3 411]3 4113 1 3 1[(2]3
21116 2(5 2[15]6 4 6
715|8 7 8 7 7158 51418
4 3 411(3 4(1]|3 113 1{213
2{1}6 2 6 2 4 7
71518 71518 7{5]|8 7/5]8 51418

m 719

Heuristic Search Strategies: A*-Search and Game Trees

CHAPTER 23

"PIOg Ul umoys si |eob ay3 01 yied
9yl "aweb 9jzznd-g ayi ui aieis |eob ay) 03 31e1S [erlul udAID Syl WoUy yied e Joj ydiess 1siiy-yipeasq ayl Aq pajessuab sajels ay |

€€ 3UNOI

[eo3
8L L S|L||8 S 8 L 8|LI||I8|L SILI8|S|LI|8]S 8 L8 L
9161V Siv civil9 9 € POIS|T||91S|1]|8]9 C191 {91 T]|L|]|9 1|y v
€|yl |1 € € C THelv|iclelv{clle|v|c vicllelv|T|¢€ 19 4
8 S 8 8|S|L S|L 8 L 8|S|L 8lS|L 8|S|L
91¥v|L 9]¢ 9|1C\|¥ 91v 91¢6|1 911 911 14N
e{C|I €T € [4R! e|lv|C ey elv|c 91¢1T
8¢ 8|S|L 81S(L 81S|L
91V |L 9 4 9 [91|11
[AR4R! €l e|v|c €T
816¢ 8lS|L
91y 91¥ |1
¢|C € Z
8|S|L
21¥|1
€|C
J1elS [RUITUT
8L 81S|L
91¢|¥ ARZAR!
IS R4AR| ¢lc

1eod

J1e]S [EIIIUL

0 B PARTV: Special Topics

In general, the number of nodes generated by a breadth-first search for the
n-puzzle game is exponential in the minimum number of moves required to
reach a goal. Thus, we must look for a better search strategy to solve the problem
for initial states requiring many moves to reach the goal. We now describe such
a strategy.

A*-Search

Given a root vertex r and a set of goal states in a state-space digraph, an
A*-search is a strategy for finding a shortest path from r to a nearest goal. Such a
path is called an optimal path. An A*-search finds an optimal path using a gener-
alization of Dijkstra’s algorithm. In the discussion of Dijkstra’s algorithm in
Chapter 12, we maintained an array Dist[0:n — 1]. At each stage, the vertex v
minimizing Dist[v] over all vertices not in the tree was added to T. The values of
Dist[w] were then updated for all vertices w in the out-neighborhood of v. The
operations performed on the array Dist[0:n — 1] were essentially those of a pri-
ority queue. To aid in the description of the A*-search strategy, we now give a
high-level description of Dijkstra’s algorithm based on maintaining a priority
queue of vertices. We also modify Dijkstra’s algorithm to terminate once a goal is
dequeued. .

We denote the priority of.a vertex v in the queue by g(v), where the smaller
values of g have higher priority. At initialization, the root vertex r is enqueued
with priority g(r) = 0. When a vertex v is enqueued, a parent pointer from v to
Parent(v) is also stored. The parent pointers determine a tree. We call the subtree
of the tree spanned by the vertices that have been dequeued the dequeued tree T.
The tree T contains a shortest path in D from r to each vertex in T.

At each stage in the algorithm, a vertex v in the priority queue is dequeued,
and the out-neighbors of v are examined. If an out-neighbor w of v is already in
the tree T, then nothing is done to w. If the out-neighbor w has not been en-
queued, then it is enqueued with priority g(w) = g(v) + ¢(v, w), and a parent
pointer from w to v is set. Finally, if the out-neighbor w is already on the queue,
then the priority of vertex w is updated to g(w) = min{g(w), g(v) + c(v, w)}. If
g(w) is changed to g(v) + ¢(v, w), then the parent pointer of w is reset to point to
v. The algorithm terminates once a goal is dequeued. The path in the final tree T
from r to the goal is an optimal path. The action of the algorithm is shown in Fig-
ure 23.4 for a sample digraph.

Dijkstra’s algorithm is too inefficient for most AI applications because the
shortest-path tree can grow to be huge, even exponentially large. The reason for

FIGURE 23.4

The action of
Dijkstra’s algorithm
is shown for a
sample weighted
digraph D. The
distance g(v) is
shown outside each
node v. The vertices
and the edges of
the dequeued
(shortest-path) tree
are shaded. The
priority queue at
each stage consists
of vertices w not in
the dequeued tree,
where the priority
of wis glw).

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees W 721

its inefficiency is that only local information is assumed when looking ahead to
a goal. No global information is used that can help the shortest-path tree send
out branches in a promising direction. In other words, in Dijkstra’s algorithm,
the shortest-path tree tends to grow fat (a “shotgun approach” to a goal) rather
than grow skinny (a “beeline” approach to a goal).

! B PARTV: Special Topics

Theorem 23.3.1

23.3.1 Heuristics

When information beyond merely the costs of the edges in the digraph is avail-
able, Dijkstra’s algorithm can be improved so that the shortest-path tree is less
expansive and the search is more efficient. The idea is that the priority value g(v)
of a vertex v in the queue, which is the cumulative distance (cost) from the root
r via the current path determined by the parent pointers, can be replaced by an
overall estimate of the cost of the shortest path from r to a goal constrained to go
through v. In Dijkstra’s algorithm, the priority value of v is g(v), but now we de-
fine the priority value of v to be the cost function

fv) = g(v) + h(v), (23.3.1)

where h(v) is some estimate of the cost of a shortest path from v to a goal vertex.
Because the shortest path from v to a goal has not been found, the best that we
can do is use a heuristic value for x(v).

When no restriction is placed on the heuristic # in Formula (23.3.1), & is
merely a heuristic for a greedy algorithm. When the vertices in the dequeued
tree T are reexamined and their parent pointers updated when shorter paths for
them are found, the algorithm based on (23.3.1) is called an A-search. There is no
guarantee that the first path found to a goal is optimal using an A-search. When
an A-search uses a heuristic #(y) that is a lower bound of the cost of the shortest
path from v to a goal, then the algorithm is called an A*-search. We assume that
an A*-search terminates when it dequeues a goal, or when the queue is empty.
The proof of the following theorem is left to the exercises.

Given a positively weighted digraph G (finite or infinite), if a goal is reachable
from a root vertex r, then an A*-search terminates by finding an optimal path
from r to a goal. (]

In an A*-search, when a node v is dequeued, some of its neighbors may al-
ready be in the tree T. Unlike Dijkstra’s algorithm, an A*-search must check
these neighbors to see if shorter paths to them now exist via the vertex vjust de-
queued. If shorter paths are found, then T must be adjusted to account for them
(see Figure 23.5).

Considerable computational cost may be incurred by an A*-search when ad-
justing the dequeued tree T. This computational cost can be avoided by placing a
rather natural and mild restriction on the heuristic # used by A*-search. The
heuristic value %(v) is an estimate of the cost of going from v to the nearest goal.

FIGURE 23.5

The number shown
outside each node v
in Tis the value
g(v). This example
shows how the
dequeued tree T
can change during
an A*-search. Note
that the values of g
at vertices a, b and
¢ required updating.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 723

r a b ¢ d
- 23 20 15 29

Portion of state space induced by vertices r, a, b, ¢, d,
and an associated function #

19
0 8
OO
11 18
The dequeued tree T after vertices The dequeued tree T after
r, a, b, c have been dequeued d has been dequeued

If the edge (v, w) exists, then one estimate is ¢(v, w) + h(w). The restriction on a
heuristic, called the monotone restriction, says that 4(v) should be at least as good as
this estimate.

DEFINITION 23.3.1 A heuristic #(v) for an A*-search for a given digraph with cost function ¢ on the

edges is said to satisfy the monotone restriction, if

h(v) = c(v,w) + h(w), whenever the edge (v, w) exists,
: (23.3.2)
h(v) =0, whenever v is a goal.

If & satisfies the monotone restriction, then we merely say that / is monotone.

If k1 is a monotone heuristic, then /(v) is a lower bound of the cost of the
shortest path from v to a goal. The following proposition states that an A*-search
using a monotone heuristic does not need to update parent pointers of a vertex
v already in the dequeued tree T, because the path in T from r to v is already a
shortest path in D from r to v. The result is consistent with the fact that the
A*-search algorithm reduces to Dijkstra’s algorithm when k(v) = 0 (and the
identically zero function trivially satisfies the monotone restriction).

4 M PARTV: Special Topics

'oposition 23.3.2 Suppose an A*-search uses a monotone heuristic. Then the dequeued tree Tis
a shortest-path tree in the state-space digraph D. In particular, parent pointers
for vertices in the dequeued tree T never need updating.

PROOF

For any vertex v € V, let g*(v) denote the length of the shortest path in D from
rto v (so that g(v) = g*(v) at every stage in the execution of an A*-search). We
wish to show that g(v) = g*(v) at the time when v is dequeued. If v = r, then
we have g(v) = g*(v) = 0; thus, we can suppose that v#r. Let P = v, v, ..., v,
be a shortest pathin D fromr =y, tov = v Let vertex v, be the last vertex in
Psuch that vy, v, ..., v, were all in the tree T when v was dequeued (v, exists
since r = v, € T). Then v, , , was in the queue Q at the time when v was de-
queued. For any pair of consecutive vertices v, v, | in P, using the monotone
restriction, we have

g*(v) + h(v) = g*(v}) + h(vie) + c(vpviey). (23.3.3)
Now v;and v, are in a shortest path in G, so that

T (Vie1) = g*(v) + c(vi, viey). (23.3.4)
Substituting Formula (23.3.4) in Formula (23.3.3), we ;)btain

g (v;) + h(v) = g*(vis1) + h(Vie1). (23.3.5)
Iterating Formula (23.3.5) and using the transitivity of < yields

g*Wes) + h(vir) = g*(v) + () = g*(v) + h(v). (23.3.6)

Now v, + , is on a shortest path P, and v,,v,, ... , v, all belong to T, so that
9V,) = g*(v,,). Hence, Formula (23.3.6) implies

fer1) = g9(vier) + h(vesy) = g*(v) + h(v) = g(v) + h(v) = f(v)
(23.3.7)

Thus, we must have had g(v) = g*(v) when v was dequeued; otherwise,
ftve o)) <f(v), and v would not have been dequeued in preferencetov, , . ®

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees W 725

The following proposition helps explain the terminology monotone restriction.
We leave the proof of Proposition 23.3.3 as an exercise.

Proposition 23.3.3 The f-values of the vertices dequeued by an A*-search using a monotone
heuristic are nondecreasing. O

In any problem using an A*-search, the digraph and associated cost function
are either implicitly or explicitly input to the algorithm. Here we give examples
of both scenarios. When the digraph is very large, it is usually implicitly defined,
and only the part of the digraph generated by the execution of the A*-search is
made explicit. The following is a high-level description of A*-search using a mo-
notone heuristic. At any given point in the execution of procedure A *-SearchMH,
T is a subtree of D rooted at the root vertex r containing a path from r to each
vertex that has been dequeued by the algorithm. Assuming that a path from r
to a goal exists, Theorem 23.3.1 and Proposition 23.3.2 show that when
A*-SearchMH terminates after dequeuing a goal, the corresponding path to the
goal is optimal.

wmady . -»-000 procedure A*SearchMH(D, ¢, r, GoalSet, h, T)
Input: D = (V, E) (a digraph, either implicitly or explicitly defined)
¢ (a positive cost function on £)
r (a root vertex in D)
h (a heuristic function satisfying monotone restriction)
GoalSet (a set of goal vertices in D)
Dutput: a shortest-path out-tree T rooted at r containing an optimal path to a goal
vertex, if one exists
Q (a priority queue of vertices, with v having priority value f(v) = g(v) + h(v), where
g(v) is the cost of shortest path P(v) from r to v currently generated. Q also contains
a parent pointer from v to w € T, where edge (w, v) belongs to P(v))
while Q is not empty do
dequeue vertex v in Q with minimum priority value f(v)
add vertex v to T using parent pointer
if v € GoalSet then
return
endif
for all vertices w & T and adjacent to v do
if w & Q then
enqueue w with parent v and priority value f(w) = g(w) + h(w)
where g(w) = g(v) + c(v, w)

5 B PARTV: Special Topics

else
if f(w) = g(v) + c(v, w) + h(w) then
reset parent pointer of w to v and update priority value of
wto f(w) = gw) + h(w), where g(w) = g(v) + c(v, w)
endif
endif
endfor
endwhile
return “failure”
end A*SearchMH

9595 S E RO TE IO ATI BN OGI IS INCIIBUTTIIIEILE IO EIBIDIGCEETIVIEIRNDIISITNUNGIOIIDINGIOERLERD S

“rvesese

URUEVIOITELIIE VOOV P NRUN Y

The action of procedure A *-SearchMH is illustrated in Figure 23.6 for a sam-
ple digraph D.

NN
v W
[o "
[«2RV)]
O
o

10,17

8,13

FIGURE 23.6

The action of A*-search with root vertex r = 0 and a monotone heuristic h(v) is shown for the
same weighted digraph D as in Figure 22.4.

FIGURE 23.7

Shortest-path tree
generated by the
A*-search for the

8-puzzle game with
the same initial
state and goal state
as in Figure 23.3.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees W 727

We now illustrate procedure A*-SearchMH with two examples. First, we
revisit the 8-puzzle problem. Then we consider the problem of finding shortest
paths between cities in the United States using the freeway system. In the 8-
puzzle problem, the state-space graph G is implicitly defined. In the freeway
problem, the state-space graph is explicitly input to the algorithm.

23.3.2 A*-Search and the 8-Puzzle Game
Consider the heuristic
h(v) = the number of tiles not in correct cell in the state v.
It is easy to verify that A(v) satisfies the monotone restriction. Using A (v),

Figure 23.7 shows the shortest-path tree generated by the A*-search for the
same input as shown in Figure 23.3.

initial state

2(3
114(6
7(5]8
2 3 1{2]3
1 6 6
715]8 715]8
1123 1{2]3
L1
4 714|6
715(8 5(8
11213 1 31(1[2]3
416 4(2|6|(4]|5
715|8 71518]17 8
1]2(3](1]2]3
4(5|6]|(4]5
8|78

‘8 M PARTV: Special Topics

FIGURE 23.8

U.S. freeway
system.

Note that the A*-search only generated 9 states compared to the 28 states
generated by the breadth-first search for the same input. Other monotone
heuristics exhibit even better behavior in general than the one used in Figure
23.7. For example, for any given state, the sum of the Manhattan distances (ver-
tical steps plus horizontal steps) from the tiles to their proper positions in the
goal state exhibits good performance.

23.3.3 Shortest Paths in the Freeway System

Our second example of an A*-search is for the problem of finding a shortest path
on freeways between two cities in the continental United States (see Figure
23.8). The heuristic /(v) we use will be a lower bound of the geographical (great-
circle) distance between v and the destination city t. We assume that the dis-
tances between adjacent cities is available to the algorithm via a suitable
adjacency cost matrix. The lower-bound estimate is computed using the longi-
tude and latitude of each city, which we assume are both input to the algorithm
as additional information. A lower bound of 50 miles is used for the longitude
distance of one degree apart. A lower bound of 70 miles is used for the latitude
distance of one degree apart. The square root of the sum of the squares of the
longitude distance and the latitude distance between cities v and tis used as A(v).
The heuristic #(v) is monotone because the cost (mileage-on a freeway between
adjacent cities) cannot be smaller than the geographical distance between them.
Indeed, if the cost between adjacent cities v and w is ¢(v, w), then k(v), #(w), and
¢(v, w) form an almost planar triangle, and we have h(v) = h(w) + c(v, w), which
is the monotone restriction.

Figure 23.8 shows the graph of the United States as input to a Prolog pro-
gram, as well as a shortest path from Cincinnati to Houston. Figure 23.9 shows
the shortest-path tree generated by Dijkstra’s algorithm (2 = 0), whereas Figure
23.10 shows the shortest-path tree generated by the A*-search. The number of
vertices in the shortest path between Cincinnati and Houston is 9. The number

FIGURE 23.9

Shortest-path tree
generated by
Dijkstra’s algorithm.

FIGURE 23.10

Shortest-path tree
generated by
A*-search.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 729

of vertices expanded when the heuristic is used is 34, compared with 213
vertices when expanded by Dijkstra’s algorithm. Thus, the portion of the graph
expanded using the A*-search is only 16 percent of that expanded using Dijk-
stra’s algorithm for this example. The contrast between the trees grown in Figure
23.9 and in Figure 23.10 shows rather nicely the difference between the “shot-
gun” approach to a goal made by Dijkstra’s algorithm versus the “beeline” ap-
proach made by A*-search.

The selection of a good heuristic is crucial to the success of an A*-search. The
closer h(v) is to the actual cost of the shortest path from v to a goal, the fewer
nodes will be expanded during the A*-search. However, determining heuristics
close to the actual cost is usually too expensive computationally, because deter-
mining close estimates is as hard as the original problem. It sometimes speeds the
search to use a function for 4 that does not have the lower-bound property—that
is, using an A-search instead of an A*-search. For example, there are better
heuristics leading to A-searches for the 8-puzzle game than the monotone
heuristic #(v) that was the basis for our A*-search.

0 M PARTV: Special Topics

Least-Cost Branch-and-Bound

Least-cost branch-and-bound is basically an A*-search applied to a state-space
tree with the additional use of a bounding function. We use the same notation
when describing the state-space tree T as we used in Chapter 10. Least-cost
branch-and-bound applies to problems involving minimizing an objective
function ¢ over each solution state in the state-space tree. The cost ¢(v) of a
given node v = (x, ..., x,) in the state-space tree is taken to be a lower-bound
estimate for

¢*(v) = min{g(w)lw € T, and w is a solution state}, (23.4.1)
where T, is the subtree of the state-space tree rooted at v, so that
c(v) = o*(v). (23.4.2)
Often, the cost function ¢ has the same form as with an A*-search,
c(v) = g(v) + h(v), (23.4.3)

where g(v) is the cost associafed with going from the root to the node v, and i (v)
is a heuristic lower-bound estimate of the incremental cost of going from v to a
solution state v* in T, where ¢ is minimized (over T,). Typically, g(v) is ¢(v),
where ¢(v) is an extension of the objective function ¢ to all problem states.

For example, in the coin-changing problem (see Chapter 7), g(v) is the num-
ber of coins used in the problem state v. A natural heuristic #(v) is obtained in a
manner similar to the greedy method. Let r(v) denote the remaining change re-
quired. We use as many of the largest-denomination coin as possible, then as
many of the next-largest-denomination coin as possible, and continue in this
manner as long as we do not exceed r(v). The number of coins so obtained is our
heuristic #(v) used for the lower bound c(v) = g(v) + h(v).

As a second example, consider the 0/1 knapsack problem formulated as a
minimization problem (see Chapter 10). We then have

9(x1, ..., x) = LeftOutValue(x,, ... , X;)
and

h(x,, ..., x) = —Greedy(C', B'),

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees W 731

where LeftOutValue(x,, ..., x,) is the sum of the values of the objects not in the set
{b, .., b}, B is the set of objects {b, , |, ..., b}, =C— (w, +..+w,),and
Greedy(C', B') is the value of the greedy solution to the (C’',B’) knapsack problem.

In least-cost branch-and-bound, the live nodes in the state-space tree are
maintained as a priority queue with respect to the cost function ¢. In contrast to
our method in A*-search, here we maintain a global variable UB, which is the
smallest value of the objective function over all solution states already gener-
ated. Then a node v can be bounded if ¢(v) = UB; moreover, we have the follow-
ing key fact.

Given a lower-bound cost function, if a node of least cost among the live nodes is bounded,
then the algorithm can terminate, having already generated an optimal solution state (goal
node).

The following paradigm for a least-cost branch-and-bound search strategy
uses the same notation and implementation details for the state-space tree as in

Chapter 10.
—'}‘ *settei procedure LeastCostBranchAndBound
. Input: function D,(x,, ..., X, _,) (determining state-space tree T associated with the

given problem)
objective function ¢ defined on the solution states of T
: cost function c(v) such that:
c(v) = ¢*(v) = min{fe(w) | w € T _and w is a solution state}
: Output: a solution state (goal) where ¢ is minimized
LiveNodes is initialized to be empty
AllocateTreeNode(Root)

: Root—Parent « null
: AddPriorityQueue(LiveNodes, Root) //add root to priority queue of live
nodes
Goal « Root //initialize goal to root
UB ¢

Found « false.
while LiveNodes is not empty .and. .not. Found do

cesmao

: Select(LiveNodes, E-node, k) //select E-node of smallest cost

: from live nodes

if c(E-node) = UB then //Goal points to optimal solution
state

Found « .true.

B PARTV: Special Topics

else
if E-node is a solution state and ¢(E-Node) < UB then
//update UB
UB « @(E-Node)
Goal « E-Node
endif
for each X[k] € D,(E-node) do //for each child of the £-node do
if c(X[k]) < UB .and. .not. StaticBounded (X[1], . .., X[k]) then
AllocateTreeNode (Child)
Child—info « X[k]

Child—Parent « E-node
: AddPriorityQueue(LiveNodes, Child)
//add child to list of live nodes
: endif
endfor
: endif
: endwhile
: Path(Goal) //output path from goal node to root
end BranchAndBound

49993 BN 8099833240028 9vaUnPITICETSISIGEEEATD svaumnvre r2rumrver ssussessunae ssaxarrreImISe
s

2 23.5 Game Trees

Since the invention of the electronic computer, there has been interest in com-
puterized strategies for playing two-player games. For example, particular inter-
est has been focused on designing computer programs to play chess. The first
computer programs written for playing chess were not very sophisticated, partly
because early computers were not powerful enough to store the vast amounts of
information necessary to play a good game. Computer programs implemented
on levels for such games as backgammon and computer programs for playing
bridge, have exhibited excellent performance.

Computerized game-playing strategies are usually based on the efficient par-
tial search of the enormous game tree modeling all possible legal moves for a
given two-player game. The size of the game tree of all possible moves is gener-
ally much too large to admit complete searches. Thus, computerized game-
playing strategies use heuristics to estimate the value of various moves based on
looking down a limited number of levels in the game tree.

Game trees can become quite large even for simple games. For example, con-
sider the game tree associated with tic-tac-toe on a 3 X 3 board (see Chapter 10).
Suppose two players, A and B, are placing Xs and Os, respectively, and player A
moves first. Player A has nine possible choices to place the first X. (Of course, using
symmetries of the square, only three of these moves are nonequivalent. We

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 733

FIGURE 23.11 Player
A portion of the A
game tree for
tic-tac-toe on the |
3 X 3 board.
Children of a single I l | I | I l] I
node at level 1 X X X
are shown. B X X X
....................................... X X X
o o (9]
A X X X oX X|0 X X X
[¢] o] (o]
choose to ignore this reduction for the moment.) After player A moves, then
player B has eight possible choices for placing the first O. Continuing in this fash-
ion, we see that the game tree has an upper bound of 9! = 362,880 nodes, al-
though the actual number of nodes is smaller because the game terminates
whenever a player achieves three Xs or three Os in a row. Figure 23.11 shows all
the nodes at levels 0 and 1 of the game tree, but only that portion of the nodes at
level 2 corresponding to the eight possible moves from a particular single node at
level 1. Figure 23.12 shows all the nodes in the levels 0, 1, and 2 of the pruned
game tree that results by pruning symmetric board configurations.
Now consider the game tree modeling an arbitrary game between two play-
ers, A and B, who alternately make moves, with each player having complete
Player
A
X X
B X
o X[10 X X [¢] o] [0]D.¢ X X X X
A 0 0 X X o ©
)) 0

FIGURE 23.12

A portion of the game for tic-tac-toe on the 3 X 3 board pruned by symmetric board
configurations. All nodes at the first three levels are shown.

4 M PARTV: Special Topics

£p’

e

)
s
i

knowledge of the moves of the other (a perfect information game). The root of the
game tree corresponds to the opening move in the game, which is assumed to be
made by player A. Nodes at even levels in the game tree correspond to configu-
rations where it is A’s move and are called A-nodes. Nodes at odd levels corre-
spond to configurations where it is B’s move and are called B-nodes. The children
of an A-node (respectively, B-node) correspond to all admissible moves available
to player A (respectively, player B) from the node. Similar to the game tree for
tic-tac-toe, for general games we assume a particular ordering of all admissible
moves from a given node, so our game trees are always ordered trees. A leaf
node in the game tree is called a terminal node and corresponds to the end of the
game. In general, a terminal node corresponds to a win, loss, or tie for player A,
although certain games such as nim cannot end in a tie.

Given a game tree, the value to player A is assigned to each terminal node
(outcome of the game). We also assume that the game is a zero-sum game, so that
the value to player B of a terminal node is the negative of its value to player A.
However, until further notice, when we speak of the value of a node it is always the value
to player A. We wish to design an algorithm that determines player A’s optimal
first move. In other words, we want to determine the move that player A should
make so that the game will end at a terminal node of maximum value for player
A, assuming that each player plays perfectly. Of course, if player B does not play
perfectly, then the outcome for player A could be even better.

To analyze the entire gamte, it is enough to design a procedure to determine
the optimal opening move. Indeed, after player A makes the opening move, we
would simply repeat (from player B’s point of view) the optimal strategy at the
game subtree rooted at the node corresponding to this move, and so forth.

If the game tree is small enough to be completely traversed in a reasonable
amount of time, then there is a simple minimax procedure for player A to deter-
mine the optimal opening move. We simply perform a postorder traversal of the
game tree, in which a visit at an A-node corresponds to identifying a child of
maximum value for a move from the A-node and assigning that value to the
A-node. Similarly, a visit at a B-node corresponds to identifying a child of mini-
mum value for a move from the B-node and assigning that value to the B-node.

R

The minimax
players.

strategy is nothing more than the definition of perfect play for the two

Note that postorder traversal is necessary because the value of each child of
a node must be determined before the value of the node itself can be deter-
mined. When the postorder traversal is complete, the opening move, together
with the value of the game to player A, will be determined.

FIGURE 23.13

Game tree for [3, 2]
nim, pruned to
eliminate symmetric
children of [1, 1]
and (2, 2]. Terminal
node values are +1
when A wins and
—1 when B wins.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 735

We illustrate the minimax procedure for the game tree corresponding to a
small instance of the game of nim. In the general game of nim, there are # piles of
sticks, where the ™ pile contains m;, sticks, i = 1, ... , n. Each player alternately
chooses a nonempty pile and removes some or all of the sticks from this pile. There
is usually a restriction made on how many sticks a player is allowed to remove in
a given move. The last player to remove a stick loses. For large m, + m, + - + m,,
the game tree modeling nim would be enormous. To keep things in sight, consider
the instance n = 2, m; = 3, m, = 2. The game tree for this instance is shown in Fig-
ure 23.13, where the numbers inside each node correspond to the number of
sticks left in each pile. Thus, terminal nodes correspond to 0, 0. We assign the value
of +1 to a terminal A-node (A wins) and —1 to a terminal B-node (B wins). In Fig-
ure 23.14, we have done some pruning of the complete game tree to eliminate
generating symmetric child configurations of the two nodes [1, 1] and [2, 2]. For
example, in the complete game tree, the node [2, 2] generates the four nodes
[0, 21,11, 2], [2,0], and [2, 1]. Using symmetry, we need only display the first two
nodes in Figure 23.13 when drawing the (pruned) game tree.

Player 3
A 2

o
E=)
{N i—‘}—
(v V]
{o wi
~ ol =G

A O[] [o 1] 1] fo 1| [o][1] [2
1 2] [[o] [2 2| |o]|o] o
+1I 1
5 0 o][o] [o 0 1| [1][o 0 1] [0
o lo][1][1] |o 1 1| lol|o] [o]|1 11
—1—11 -1 —1_‘[I I—I—II II
A 0] [o] 0 olfo] [o 0 1] o
0] 19 0] 1{1] (9 0 0f 9]
+1+1 +1+1II +1 +1 I+l
0][0 0
B o[|o 0
—1-1 -1 -1-1

736 M PARTV: Special Topics

FIGURE 23.14

Values + = +1
and — = —1

are assigned to each
node by the
minimax postorder
traversal of the

[3, 2] game of nim.

Player
A +=+1

|

|

U
{5 o]

- + —_— -—

A O] [o] [t] 1] [o 1] [o
1 2] [|o] |2 2| |0]
+I— + - T+ T+ +
— _Ll

N 0 0{|0 0 1] |1 1

0] [o]1]|1] 1 1| |0 1

——1++— S —Ir —I

A 0{|0 0 0] |0 1

9]19] 9] 1] 19 0

+ + + [I—

0] 0

B 2 0]

Figure 23.14 shows the results of a postorder traversal of the game tree in
Figure 23.13, where visiting a node executes the minimax procedure described
previously. In Figure 23.14, we show the value (to player A) of each node out-
side the node. Note that the [3, 2] game of nim is a win for player A. The com-
plete traversal of the game tree shows that [2, 2] is a unique opening move that
guarantees a win for player A. If a single winner strategy is desired, then the pos-
torder traversal could be terminated as soon as it is determined that the root
node has value +1 (with the opening move [2, 2]). Of course, similar termina-
tion can be done in any game where we simply have the values +1, 0, and —1
for win, tie, and loss, respectively.

A game in which a complete traversal of the game tree is feasible is usually
too small to be interesting. Even the ordinary game of 3 X 3 tic-tac-toe has a
rather large game tree. For games like chess, the game tree has been estimated to
contain more than 10'% nodes. Thus, rather than attempting to traverse the en-
tire game tree when determining an optimal move, in practice the minimax pro-
cedure is usually limited to looking ahead a fixed number of levels r in the game
tree (r-level search). Terminal nodes encountered within r levels are assigned the

FIGURE 23.15

Value of each

node at level 2 as
computed using the
number of winning
lines completable

by Xs minus the
number of winning
lines completable by
Os. The values of
nodes at levels 1
and 0 are computed
using the minimax
strategy.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees W 737

value of the outcome of the game corresponding to this node. Nonterminal
nodes at level r are assigned some estimate of the value of the node based on the
best available knowledge, typically using some heuristic. Nodes that look more
promising are given higher values. Of course, the better the estimate, the better
the strategy generated by the r-level search.

Suppose we consider 3 X 3 tic-tac-toe with a two-level search. None of the
nodes in the first two levels is a terminal node, so we need to come up with some
estimate of the value of each node at level 2. A natural choice would be to assign
to a given node (configuration of the board) the number of winning lines com-
pletable in Xs minus the number of winning lines completable by Os. For exam-
ple, Figure 23.15 shows the value of each node at level 2 in the game tree
(pruned by symmetries). The figure also shows the result of applying the two-
level search (minimax procedure) to the game tree for 3 X 3 tic-tac-toe, which
gives the values of —1, 1, and —2 to the nodes C,, C,, and C; at level 1, respec-
tively, and gives the root node a value of 1.

We see from Figure 23.15 that player A’s opening move would be to place an
X in the center position. Then the minimax procedure is continued from the sub-
tree rooted at the latter node. Unfortunately, continuing with the same two-
level heuristic search method may lead to a loss for player A (see Exercise 23.24).
The fairly obvious fix to this problem is to assign an appropriately large value to
terminal positions when encountered in the search We simply give terminal
nodes that are wins for player A (that is, three Xs in a row) any value greater
than 8, which is the total number of winning lines for the 3 X 3 game. For ex-
ample, we could assign the value 9 to terminal nodes that are wins for player A
and —9 to terminal nodes that are wins for player B. Terminal nodes corre-
sponding to tie games (cat’s games) are assigned the value 0. With the values 9,

Player 1
A
-1 1 |-2
X X
B Cl C2 X C3
| |
I [T] 1 |
X xjo] x| |o x X o o) olx X X X X
A [9) [X X of o
0 0 [9)
-1 1 0 0 1 1 2 -1 -2 0 -1 0

3 B PARTV: Special Topics

0, and —9 so assigned to terminal nodes, a two-level search leads to a tie game.
A tie game for the 3 X 3 board is the best that either player can hope for when
both players play perfectly.

There is a heuristic strategy called alpha-beta pruning that can result in a sig-
nificant reduction in the amount of nodes required to visit during an n-level
search and still correctly compute the value of a given node. The easiest way to
explain alpha-beta pruning is by example. Consider again the two-level search
made in the game tree in Figure 23.15. After returning to the root from the mid-
dle child C,, we know that player A can make a move to a node having value 1.
Then we move to the third child C, of the root and begin visiting the children of
C; (grandchildren of the root). The first child of C, has value —1, so we can im-
mediately cut off our examination of the remaining children of C,. The reason is
simple: The value of C, is the minimum value of its children, so the value —1 of
the first child of C, places an upper bound of —1 on the value of C;. Because the
lower bound on the value of the root is already known to be 1, the value of C,
cannot possibly affect the value of the root. The cutoff just described is illustrated
in Figure 23.16. A cutoff of the search of the grandchildren of an A-node
(respectively, B-node) is called alpha-cutoff (respectively, beta-cutoff).

We formalize the notion of alpha-beta pruning as follows. A lower bound for
the value of an A-node is called an alpha value of the A-node. Note that during an
r-level search, an alpha value of a parent A-node is determined when we return
to the A-node from its first child, and the alpha value can be updated, as appro-
priate, when we return from subsequent children. For example, after returning

Player
A
|
: X
B C, ¢]
| —
T 1 1T 1 — -
X o Xl |0 X X [o] o] 0|X X . . -
A 0 _ x X I
[: 0
-1 1 0 0 1 1 2 N T o
| alpha-cutoff
HGURE 2316

An alpha-cutoff.

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 739

to the root from child C, in Figure 23.16, we knew that —1 was an alpha value of
the root. However, on returning to the root from the second child C,, we could
update the alpha value of the root to 1.

In general, suppose during an r-level search we are examining the children
of the ™ child of C, where the parent of C, is an A-node X. If we encounter a
child of C; (grandchild of X) whose value is not larger than an alpha value of X,
then we can cut off (alpha-cutoff) our search of the remaining children of C,, be-
cause the value of C; cannot affect the value of X.

An entirely symmetric discussion holds for B-nodes. Specifically, an upper
bound for the value of a B-node is called a beta value of the B-node. Given any
grandparent B-node Y, if during an r-level search we encounter a child (grand-
child of Y) of the /* child D, of ¥ whose value is not smaller than a beta value of
Y, then we can cut off (beta-cutoff) our search of the remaining children of D,
because the value of D, cannot affect the value of Y.

Figure 23.17 illustrates a sample game tree and the effect of alpha-beta
pruning for a complete search (that is, a three-level search) of the tree. To illus-
trate the dynamic nature of alpha and beta values, in Figure 23.17a, we show the
indicated alpha and beta values of nodes just after returning to the node X from
its second child. The value inside a given node is either the actual value of the
node or an alpha or beta value as appropriate. Those nodes containing an alpha
or a beta value are flagged as such. A value in a node that is shown as * means
that the value is irrelevant because the node is never reached due to alpha-beta
pruning. To emphasize the stage of the search in Figure 23.17a, no values are
shown inside the nodes of the subtree rooted at the third child of X. In Figure
23.17b, values are supplied for the nodes in the latter subtree, where we show
the results of the completed search.

When writing pseudocode implementing the minimax procedure, it is con-
venient to consider the value of a B-node to be the value to player B, not A. In
other words, we simply change the signs of the values given to B-nodes in our
previous discussion. These changes simplify the pseudocode by turning the min-
imax procedure into a max procedure. Note that in the max procedure, the
value of either an A-node or a B-node is the maximum of the negatives of the
values of their children. Thus, the identical max procedure is executed at an
A-node or a B-node.

In the new scenario, our cutoff rule takes the same form whether we are ex-
amining the children of an A-node or those of a B-node. In either case, suppose
LB is a lower bound for the value of the node v whose children are being evalu-
ated, and suppose ParentValue is a lower bound for the value of the parent node.
If we ever determine that —LB =< ParentValue, then we can cut off further exam-
ination of the children of v because the value of v cannot affect the value of the
parent of v.

740 B PARTV: Special Topics

FIGURE 23.17

(a) The results of
the search just after
returning to X from

its second child G,;
b) the results of the
completed search.

Ipha
X alp
A @ value

IO “ @ viie "0

alpha l

A O ™o O ? O O

beta-cutoff alpha-cutoff
(a)

2 YO @ e O

alpha l (l) alpha
A C2> value C(D @ <3> 5 value

Sodooobobdobbobdibios

beta-cutoff alpha-cutoff beta-cutoff
(b)

The following pseudocode for the recursive function ABNodeValue returns
the value of a node X in the game tree using a NumLevels-search, where the pa-
rameter ParentValue is a lower bound for the value of the parent of X. If X is a ter-
minal node, or if NumLevels = 0, then we assume that X has been given an
appropriately defined value (denoted by Val(X)) as described earlier. Given a

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 741

node X and an integer r, the value of X would be calculated using an r-search by
invoking ABNodeValue initially with arguments X, r, .

‘“’“%" ©trrrttt o function ABNodeValue(X, NumLevels, ParentValue) recursive
Input: X (a node in the game tree having children C,, C,, ..., C,),
NumlLevels (number of levels to search)
Parentvalue (lower bound on the value of the parent of X)
Output: returns the value of X
if X is a terminal node .or. NumLevels = O then
return(Val(X))
else
LB « —NodeValue(C,, NumLevels — 1,) //initial lower bound for value of X
fori < 2 tok do
: if LB = ParentValue then //cutoff
return(LB)
: else
LB « max(LB, —NodeValue(C,,NumLevels — 1, —LB)
endif
: endfor
: endif
return(LB)
end ABNodeValue

N
--- 298202320223 30974028020200852002%Na00GRIRO

When measuring the efficiency of ABNodeValue, the quantity of interest is
the number of nodes cut off from the straight minimax r-search of the game tree
that does not use the cutoff rule. Of course, not much can be said in general un-
less some assumptions are made about the regularity of the game tree. Even with
strong regularity conditions imposed on the game tree, the analysis is difficult.
We merely state one result in this direction. Perl has shown that for game trees
in which each parent has the same number of children, and in which the termi-
nal nodes are randomly ordered, ABNodeValue permits a search depth greater by
a factor of 4/3 than that allowed by the straight minimax procedure in the same
amount of time.

Alpha-beta pruning can be enhanced by adding an additional parameter
NodeValueLowBnd into the algorithm ABNodeValue. NodeValueLowBnd is main-
tained as a lower bound on the value on the input parameter X. Additional
pruning of the game tree results from the following key fact.

l.l. If the value of a grandchild of X is not larger than Node ValueLowBnd, then all remaining
5‘ children of the grandchild can be pruned.

| X

742 W PARTV: Special Topics

Whereas alpha-beta pruning only uses information from the parent,
NodeValueLowBnd carries information deep into the tree, and the resulting eval-
uation of the game tree is called deep alpha-beta pruning. We leave the design of
the recursive function for deep alpha-beta pruning as an exercise.

Closing Remarks

Seeking solutions to the 8-puzzle game or finding a shortest-length trip along a
freeway system are examples of what has been called single-agent problems. In
general, an A*-search is better suited for a large-scale problem in which the entire
solution is sought in a reasonable length of time (and then saved for future refer-
ence) than for a real-time problem in which the first step (and each successive
step) in the solution must be computed very quickly. For example, it might be
acceptable for a computer to take weeks or even months to solve a highly im-
portant single-agent problem because its solution would then be known and us-
able in real time thereafter.

An ordinary A*-search as applied to a single-agent problem usually finds the
entire path to a goal before even the first move from the starting position is def-
initely known. Hence, using an A*-search for a single-agent problem becomes
too costly for a large-scale application where the optimal decisions along the way
must be made quickly and in advance of the final solution. For example, you
might be under a short time constraint to make each move in a game like the
8-puzzle game, rather than simply wanting to determine the entire solution in a
larger but more reasonable length of time.

While most single-agent problems are not subject to intermediate real-time
constraints, two-player games usually are. Chess, for example, usually restricts
the amount of time a player has to make the next move. Moreover, the game
tree for chess is so enormous that generating complete solutions is out of the
question. To make real-time decisions, the alpha-beta heuristic is based on at-
tempting to evaluate moves in a limited search horizon—that is, looking ahead a
fixed number of moves.

For a single-agent problem, a heuristic search method called real-time A *-seqrch
combines the A*-search strategy with a limited look-ahead search horizon. A real-
time A*-search uses an analog of minimax alpha-beta pruning called minimin
alpha pruning. Alpha pruning drastically improves the efficiency of A*-search with-
out affecting the decisions made. Like an A*-search, a real-time A*-search can find
the entire solution to a fairly large-scale problem in a reasonable amount of time.
However, a real-time A*-search has the advantage of generating the optimal
moves along the way quickly and before the entire solution is known. Refer to the
references for further information on the real-time A*-search.

Suppose that a perfect-information game involving alternate moves by two
players A and B must end in a finite number of moves and a win for one of the

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 743

two players. Then one of the two players must have a winning strategy—that is, a
strategy that guarantees a win regardless of the moves made by the other player.
The reason is simple: If neither player had a winning strategy, there would be a
sequence of alternate moves made by A and B that never ends in a loss for either
player. Because that sequence would not terminate, we would obtain a contra-
diction of the finiteness assumption of the game.

A two-person positional game is determined by a collection of sets A, i =
1, ... , m. The players alternately choose an element (which they keep)
from Ui=1 A,. The first player to choose all the elements from one of the sets
wins. Tic-tac-toe is an example of a positional game, where the sets A, are the
winning lines in the board. For positional games that cannot end in a tie, such
asthe 3 X 3 X 3 game of tic-tac-toe, the first player always has a winning strat-
egy. Indeed, we have just seen that one of the two players must have a winning
strategy, so suppose it is the second player. Then the first player makes a ran-
dom opening move, and thereafter assumes the role of the second player (ba-
sically ignoring the opening move). More precisely, when the first player
moves, he chooses the move dictated by the second player’s winning strategy,
or moves randomly if he has previously made this move. Since having made an
extra move in a positional game cannot possibly hurt, the first player is thus led
to a win! This contradicts the assumption that the second player has a winning
strategy and shows that the first player has a winning strategy. The same argu-
ment shows that if there is a winning strategy for a positional game, then it
must belong to the first player.

For positional games that cannot end in a tie, the fact that the first player has
a winning strategy does not mean that there is an efficient algorithm to generate
the strategy. Also, for positional games that can end in a tie (given, perhaps, im-
perfect play), there still might exist a winning strategy for the first player. For ex-
ample, tie positions exist for the 4 X 4 X 4 game of tic-tac-toe (winning sets
being four in a row). However, it was conjectured for a long time that the first
player has a winning strategy in 4 X 4 X 4 tic-tac-toe. This conjecture was finally
established by Patashnik using clever bounding arguments that allowed a prun-
ing of the enormous game tree for 4 X 4 X 4 tic-tac-toe, reducing it to a size that
was amendable to computer search.

References and Suggestions for Further Reading
Kanal, L., and V. Kumar, eds. Search in Artificial Intelligence. New York: Springer-
Verlag, 1988. Contains numerous articles on search in artificial intelligence,
including a discussion on the optimality of the A*-search.
Korf, R. E. “Real-Time Heuristic Search,” Artificial Intelligence 42 (1990): 189-211.
A paper devoted to the real-time A*-search.

44 W PARTV: Special Topics

Nilsson, N. J. Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980. A de-
tailed account of the A*-search, which was originally developed by Hart,
Nilsson, and Raphael.

Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Reading,
MA: Addison-Wesley, 1984. A text devoted to heuristic searching.

Two books on artificial intelligence that contain extensive discussions of search
strategies and game playing:
Rich, E., and K. Knight. Artificial Intelligence. 2nd ed. New York: McGraw-
Hill, 1991.

Russell, S. J., and P. Norvig. Artificial Intelligence: A Modern Approach. En-
glewood Cliffs, NJ: Prentice Hall, 1995.

Patashnik, O. “Qubic: 4 X 4 X 4 Tic-Tac-Toe,” Mathematics Magazine 53 (1980):
202-223. Survey discussion of n-dimensional tic-tac-toe, as well as the proof
that the 4 X 4 X 4 is a first-player win.

Two papers containing detailed analyses of alpha-beta and deep alpha-beta
pruning:

Baudet, G. “An Analysis of the Full Alpha-Beta Pruning Algorithm,” Proceed-
ings of the 10th Annual ACM Symposium on Theories of Computing, San
Diego, CA: Association for Computing Machinery, 1978, pp. 296-313.

Knuth, D. “An Analysis of Alpha-Beta Cutoffs,” Artificial Intelligence 6
(1975): 293-323.

Berlekamp, E. R., J. H. Conway, and R. K. Guy. Winning Ways, for Your Mathe-
matical Plays. Vol. I, II. New York: Academic Press, 1982. Covers strategies
for a host of games.

Section 23.2 8-Puzzle Game

23.1 Draw the first three levels of the state-space tree generated by a breadth-
first search for the 8-puzzle game with the following initial and goal states:

goal initial state

11213 4127
415|6 1 6
718 3[5]8

23.2

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 745

The (n? — 1)-puzzle is a generalization of the 8-puzzle to the # X n board.
The goal position is where the tiles are in row-major order (with the
empty space in the lower-right corner). For k € {1, ..., n?}, let L(k) denote
the number of tiles ¢, t < k, such that the position of ¢t comes after k in the
row-major order in the initial arrangement (the empty space is consid-
ered as tile n?). Show that a necessary and sufficient condition that the
goal can be reached is that

E:L(k) =i+ j(mod 2), (23.3.4)
k=1

where (i, j) is the position of the empty space in the initial arrangement.

Section 23.3 A*-Search

233

234

23.5

23.6

23.7

23.8

Show that if / is a monotone heuristic, then A(v) is a lower bound of the
cost of the shortest path from v to a (nearest) goal.

Prove Proposition 23.3.3.

Design an algorithm for an A*-search using a heuristic that is not neces-
sarily monotone.

For the 8-puzzle game, consider the following heuristic:

h(v) = the number of tiles not in correct cell in the state v.
Show that #(v) satisfies the monotone restriction.
For the 8-puzzle game, consider the following heuristic:

h(v) = the sum of the Manhattan distances
(vertical steps plus horizontal steps) from the
tiles to their proper positions in the goal state.

Show that 4 satisfies the monotone restriction.

For the 8-puzzle game, let # be the monotone heuristic defined in Exer-
cise 23.6. For the following initial and goal states, draw the states gener-
ated by making the first three moves in the game using an A*-search with
the priority function f(v) = g(v) + h(v) [4(v) is the number of moves
made from the initial state to v]. When enqueuing states, assume that the

6 B PARTV: Special Topics

23.9

23.10

23.11

23.12

(possible) moves of the empty tile are ordered as follows: move left, move
right, move up, move down. Label each state v with its f-value.

goal initial state
11213 4127
4(5|6 1 6
718 3(5(18

Repeat Exercise 23.8 for the heuristic /2 defined in Exercise 23.7.

Write a program for the n-puzzle game using the Manhattan distance
heuristic. Test your program for n = 8 and n = 15.

Can you find better heuristics (not necessarily lower bounds) for the »-
puzzle game than the Manhattan distance heuristic? Test your heuristic
empirically for n = 8 and n = 15.

Prove Theorem 23.3.1

Section 23.4 Least-Cost Branch-and-Bound

23.13

23.14

23.15

23.16

23.17

23.18

23.19

Show that the heuristic #(v) given in Section 23.4 for the coin-changing
problem is a lower bound for the minimum number of additional coins
required to make correct change from the given problem state v.

Write a program implementing a least-cost branch-and-bound solution to
the coin-changing problem.

Design a heuristic and a least-cost branch-and-bound algorithm for the
variation of the coin-changing problem in which we have a limited num-
ber of coins of each denomination. Assume the number of coins of each
denomination is input along with the denominations.

Draw the portion of the variable-tuple state-space tree generated by least-
cost branch-and-bound for the instance of the 0/1 knapsack problem
given in Figure 10.13 in Chapter 10, using the heuristic given in Section
23.4. Label each node with the value of ¢(v) and the current value of UB.

Repeat Exercise 23.16 for the fixed-tuple state-space tree.

Write a program implementing a least-cost branch-and-bound solution to
the 0/1 knapsack problem. ’

Given the complete digraph f(,, with vertices 0,1, ... ,# — 1 and a nonneg-
ative cost matrix C = (c) for its edges (we set G = if i = j or if the edge
ij does not exist), a traveling salesman tour starting at vertex 0 corre-
sponds to a sequence of vertices 0,7,,1,, ..., I 0,wherei,i,,...,0, _is

LIRS

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 747

a permutation of 1, ..., n — 1. Consider a state-space tree T for the travel-
ing salesman problem (finding a minimum-cost tour) where a node at
level kin T corresponds to a simple path containing k& + 1 vertices, starting
with vertex 0. Thus, T has depth #n, and leaf nodes correspond to a se-

quence of choices i ,» determining the tour 0, 7, 1,, ..., i, _, 0.

N S

We now describe a cost function ¢(v) for a least-cost branch-and-
bound algorithm for the traveling salesman problem. The definition of
¢(v) is based on the notion of a reduced-cost matrix. A row (or column) of
a nonnegative cost matrix is said to be reduced if it contains at least one
zero. A nonnegative cost matrix is reduced if each row and column of the
matrix is reduced (except for rows and columns whose elements are all
equal to «). Given the cost matrix C, an associated reduced-cost matrix C,
is constructed as follows. First, reduce each row by subtracting the mini-
mum entry in the row from each element in the row. In the resulting ma-
trix, repeat this process for each column. We define c(r) to be the total
amount subtracted. The following example illustrates C, for a sample C.

© 23 9 32 12 ©w 14 0 18 3
21 © 2 16 4 19 © 0 9 2
4 8 ® 20 6 =10 4 o 11 2| c¢(r)=27
15 10 4 o 2 13 8 2 o 0
9 5 8 10 ® 4 0 3 0 o

More generally, we define (inductively on the levels of T) a reduced-
cost matrix for each nonleaf node by suitably reducing the cost matrix C,
associated with the parent node u of v. Suppose u corresponds to a path
ending at vertex 7, and v corresponds to adding the edge ij to this path. We
then change all the entries in row 7 and column j of C, to =, as well as the
entry in the j" row and first column. We then perform the same subtract-
ing operation on the resulting matrix as we did when computing C.. Let s,
denote the total amount subtracted, and define c(v) = c(u) + C,(,j) + s,

For leaf nodes v, ¢(v) is defined as the cost of the tour determined by v.
a. Show that ¢(r) is a lower bound for the minimum cost of a tour.

b. More generally, show that ¢(v) =< ¢*(v) = the minimum cost over all
tours determined by the leaf nodes of the subtree of T rooted at v.

748 W PARTV: Special Topics

c. Part (b) shows that ¢(v) is suitable for LeastCostBranchAndBound. Design
and give pseudocode for LeastCost BranchAndBound implementing c(v).

23.20 Draw the portion of the state-space tree T generated by the least-cost
branch-and-bound discussed in the Exercise 23.19 for the cost matrix il-
lustrated in that exercise. Label each node v with its cost value c(v). Also,
write out the reduced matrix associated with each node generated.

23.21 Discuss other state-space trees and associated cost functions ¢(v) for the
traveling salesman problem.

Section 23.5 Game Trees

23.22 Consider the two-person zero-sum game shown in the figure below. The
values in the leaf nodes are values to player A. Use the minimax strategy
(postorder traversal) to determine the value of the game to player A.
Show clearly where alpha-cutoff and beta-cutoff occur, as well as (final)
actual values, alpha values, and beta values of all nodes reached in the
traversal.

Player

- OO O

)
e O j?

L BOBOOOOOSGOOSEOBEE

A SO AW

23.23

23.24

23.25

23.26

23.27

CHAPTER 23: Heuristic Search Strategies: A*-Search and Game Trees B 749

Rewrite the recursive function NodeValue as a recursive procedure that
has the same input parameters, Y, NumLevels, ParentValue, but now returns
in output parameters the value V of Y and the child C, whose value is — V.

Find a sequence of admissible moves for the two-level heuristic search
illustrated in Figure 23.16 that leads to a loss for player A in 3 X 3
tic-tac-toe.

Show that by assigning the values 9, 0, and —9 to terminal nodes that are
wins, ties, or losses, respectively, for player A, the two-level search illus-
trated in Figure 23.16 never leads to a loss for player A.

Because there are no tie positions in the 3 X 3 X 3 tic-tac-toe game, the
tirst player has a winning strategy. Find a winning strategy for the first
player.

Design a recursive function DABNodeValue(X, NumLevels, ParentValue,
NodeValueLowBnd) for deep alpha-beta pruning. The initial invocation of
DABNodeValue should have ParentValue = « and NodeValueLowBnd = —<,

Redo Exercise 23.22 for deep alpha-beta pruning. Indicate any pruned
nodes that were not pruned by alpha-beta pruning.

	Boka-fullengde
	Boka-fullengde
	Boka-fullengde
	Boka-fullengde

