simula - by thinking constantly about it

An Introduction to Regression Testing

Prof. Lionel Briand
Ph.D., IEEE Fellow

© Lionel Briand 2011

simula

Objectives

Problem definition

Outline types of solutions
Discuss situation in SOFIE
References

© Lionel Briand 2011

simula - by thinking constantly about it

Definition
Version 1 Version 2
1. Develop P 1. Modify P into P’
2. Test Pwith testset T 2. Test P' for new functionalities
3. Release P 3. Perform regression testing on P' to

ensure that the code carried over
from P behaves correctly

Main principle: reusing tests derived
for P!

Identifying T', a subset of T
4. Release P’

© Lionel Briand 2011

simula - by thinking constantly about it

Terminology

Regress = returning to a previous, usually worse, state
Regression testing
- Portion of the testing life cycle

- During which program P has been modified into program
P' (maintenance)

- P’ needs specific testing attention to ensure that
- newly added or modified code behaves correctly
- code carried over unchanged, continues to behave correctly
Important problem:

- Regression testing constitute the vast majority of testing
effort in many software development environments.

© Lionel Briand 2011

[.research laboratory |

Regression Testing vs. Testing

Regression Testing is not a simple extension of testing
Main differences are:

- Testing starts with a specification, an implementation of the
specification and a test plan (black-box and/or white-box test
cases). Everything is new

- Regression testing starts with a (possibly modified)
specification, a modified program, and an old test plan (which
requires updating)

- Testing aims to check the correctness of the whole program

- Regression testing aims to check (modified) parts of the
program

- Testing time is normally budgeted before the development of a
product (part of development costs)

- Regression testing time should be accounted for in the planning
of a new release of a product

© Lionel Briand 2011 5

[.research laboratory |

Regression Testing vs. Testing (cont.)

- During testing, knowledge about the development process is
available (it is part of it)

- During regression testing, the testers may not be the ones who
developed/tested the previous versions!

- Completion time for regression testing should normally be much
less than that for exhaustive testing (only parts are tested)

- Testing occurs frequently during code production

- Regression testing occurs many times throughout the life of a
product, possibly once after every modification is made to it

© Lionel Briand 2011

l.

simula

Regression Testing

- by thinking constantly about it

Process

P in modified into P’ Not all the tests for P will work on P’, some do not
need to be executed, some may be redundant, there
/ may be too many of them and we have to rank them.

Test revahdatlon/selectlon/ 4. Test execution
mmlmlzatlon/prlorltlzatlon / N

The execution of the test set.

/ Placing P’ in its intended or simulated J

environment ready to receive test data.

Test set up

5. Output comparison

T

Each test needs verification

Test sequencing -

6. Fault mitigation

The sequence in which tests are
inputted to an application may
or may not be of concern.

e

What do we do when a fault is
revealed?

© Lionel Briand 2011

7

simula - by thinking constantly about it

Regression Testing Process (cont.)

Test Revalidation
- Checking which tests for P remain valid for P'.

- To ensure that only test that are applicable to P’ are used
during regression testing.

- How can we automatically identify Obsolete test cases?
Test selection
- Should we select and execute all tests in T ?
- Test only modification-traversing tests?
- Classification of tests:
* Re-testable: should be re-run
- Reusable: may not need to be re-run.

» Tests in T are either Obsolete (T,), Re-testable (T;;), or Reusable
(Tru)-

© Lionel Briand 2011

[.research laboratory |

Regression Testing Process (cont.)

Discards tests seemingly redundant with respect tfo some
criteria.

E.g., if two tests t; and t, execute function f, one might keep
only t,.

Purpose: reducing the number of tests to execute for
regression testing.

Prioritizing tests based on some criteria

Context: after revalidation, selection, minimization, one may
still have too many test cases (cannot afford to execute them
all).

Minimization and prioritization can be considered selection
techniques.

Minimization and prioritization techniques can be used during
testing P (not necessarily during regression testing).

© Lionel Briand 2011 9

simula - by thinking constantly about it

Regression Testing Process

Test Revalidation

(Regression) Test Selection

Test Minimization

Test Prioritization

© Lionel Briand 2011 10

[.research laboratory |

Test Revalidation

Three ways that a test case may become
- Program modification leads to (now)

- If P has been modified, some test cases may correctly
specify the input/output relation, but may not be testing
the

» For example, the modifications from P to P' change
some equivalence classes. t€T used to exercise a
boundary, which is no longer a boundary. €T is
obsolete as it does ho longer test a construct
(boundary) of interest.

- A structural test case t€T may no longer contribute to
the of the program.

11
© Lionel Briand 2011

simula - by thinking constantly about it

Regression Testing Process

Test Revalidation

(Regression) Test Selection

Test Minimization

Test Prioritization

© Lionel Briand 2011 12

simula - by thinking constantly about it

The Regression Test Selection Problem

Let P denote the program that has been tested
- Using test set |
- Against specification S
Let P’ be generated by modifying P
- P'"must conform to S'
+ Sand S could be the same (e.g., corrective maintenance)
+ SCS' (e.g., S' contains new features, redefined features)
Regression Testing Problem

- Find a test set Tyron which P'is to be tested to ensure that
code that implements functionalities carried over from P work
correctly.

In addition P' must be tested to ensure that newly added code
behaves correctly.

13
© Lionel Briand 2011

[.research laboratory |

Regression Test Selection Techniques

= T - TO
- Often not a practical solutionas T - T, is often too large (too
many test cases to run in the amount of time allocated)

- Select randomly tests from T - T,
- The tester decides how many tests to select
- May turn out to be better than no regression testing at all

- But may not even select tests that exercise modified parts of
the codel

- Selecting a subset of T - T, such that only tests that
guarantee the execution of modified code and code that might
be impacted by the modified code in P' are selected.

- A technique that does not discard any test that will fraverse a
modified or impacted statement is known as a "safe"” regression
test selection technique.

. : 14
© Lionel Briand 2011

simula - by thinking constantly about it

Overview

T T,
(obsolete) Teu pomnmeeee
(re-usable) g P
Tgr - - £----
(re-testable) i
Functionalities !
retained across
Pand P’
T :
regression Y
tests P’
Modified and
newly added code
15

© Lionel Briand 2011

[.research laboratory |

Test Selection Using Execution Traces

- Execution trace = sequence of control flow graph (CFG) nodes
hit during one test execution

trace(t) = execution trace of test case t.
test(n) = set of tests that hit node n at least once.
We consider execution traces for T - T,

Build the control flow graphs G and G’ of P and P, respectively

G and G' account for control flow, as well as function calls and
variable declarations

Identify nodes (edges) in P and P’ that are equivalent or not
Different techniques exist (e.g., syntax trees)

For each node nEG that does not have an equivalent node in G’
Tor = Tt U test(n)

. : 16
© Lionel Briand 2011

simula - by thinking constantly about it

Example

An execution trace of program P for some test tin T is the sequence
of nodes in G traversed when P is executed against t. As an example,
consider the following program.

1 main(){ 1 int gl(int a, b){ 1 int g2 (int a, b){
2 int x,y,p: 2 1int a,b; 2 1int a,b;

3 input (x,y); 3 1if(a+ 1==Db) 3 1if(a==(b+1l))
4 if (x<y) 4 return(a*a); 4 return(b*b);
5 p=gl(x,y); 5 else 5 else

6 else 6 return(b*b); 6 return(a*a);
7 p=g2(x,y); 7 } 7}

8 endif

9 output (p);

10 end

11}

1
© Lionel Briand 2011 ’

simula - by thinking constantly about it

Example: Control Flow Graph

Here is the CFG for our example program.

18

© Lionel Briand 2011

simula - by thinking constantly about it

Example: Traces

Now consider the following set of three tests and

hi<x=2y=1=>
hi<x=3y=1=>

the corresponding trace. [,l ex=1,y=3> }
T =

Test (1) Execution trace (trace(t))

4 main.Start, main.1, main.2, gl.Start, gl.1, gl.3, gl .End,
main.2, main.4, main.End.

t main.Start, main.1, main.3, g2.Start, g2.1, g2.2, g2.End,
main.3, main.4, main.End.

B3 main.Start, main.1, main.2, gl.Start, gl.1, gl.2, gl.End,

main.2. main.4. main.End.

1
© Lionel Briand 2011 9

simula - by thinking constantly about it

Example: Test vector

A test vector for node n, denoted by test(n), is the set of tests that
traverse node n in the CFG. For program P we obtain the following test

vectors.

Test vector (test(n)) for node n

Function 1 2 3 !
main 1, bt N, i) h,h by
gl N, 3 f t -
g2 f f None -

20
© Lionel Briand 2011

simula - by thinking constantly about it

Example: Syntax trees

A syntax tree is constructed for each node of CFG(P) and CFG(P'). This
is used to identify differences in nodes (i.e., compare trees). Recall
that each node represents a basic block. Here are sample syntax trees

for the example program.

/\ N ;<
. p call < b
input < S~ A
N S param param function 3 1
X Yy X oy | | |
X y gl
main.1 main.2 g1.1
retrrn return
* *
N N
a a b b
gl.2andg23 gl.3andg2.2 21

simula - by thinking constantly about it

Test selection example

Suppose that function gl in P is modified as follows.

int gl(int a, b){ <« Modified gl.
int a, b;
if(a-1==b) <« Predicate modified.
return(a*a),
else
return(b*b),

}

S I e T & B SR VI o6 I

Ter={11, 13}. No different CFG node is
exercised with 12

)) 22
© Lionel Briand 2011

[.research laboratory |

Test Selection Using Dynamic Slicing

- Let P be the program under test
- Let T be a test case against which P has been executed
- Let | be a location in P where variable v is used.

- The dynamic slice of P with respect to t+ and v is the set of
statements/nodes (CFG) in P that lie in trace(t) and did affect
the value of v at .

- Many different algorithms, with various complexities and
accuracies

Let DS(t) denote a dynamic slice of P with respect to t (1€T)
and an output variable of P.

Let n be a node in P (CFG) modified to generate P’
For all output variables, if n € DS(t) then re-test t+ (Tpr = Tpr U
{th

. : 23
© Lionel Briand 2011

Rothermel and Harrold Study

Pct. Of 70 — i
tests 60 i
selected s - N =

Pct.of 7 7 w AR Eel i
oS o w123
selec

usl.128 schedule2 schedulel tcas
Program

totinfo

replace

Version

24
© Lionel Briand 2011

simula - by thinking constantly about it

Regression Testing Process

Test Revalidation

(Regression) Test Selection

Test Minimization

Test Prioritization

© Lionel Briand 2011 25

[.research laboratory |

Test Minimization

Regression test selection finds a subset Ty of T.
Suppose P contains n
- Functions, basic blocks, conditions, ...
Suppose that tests in Ty cover m<n of the testable entities

- There is likely an

tests in Tyt

amongst the entities covered by two

Is it possible (and beneficial) to reduce Tyrto Tyn?

such that

each of them
tests in TN

Will Ty have the same fault detection effectiveness as Ty1?

It depends on
entities used.

and
entities covered by tests in Tyrare also

the modifications (from P to P'), the faults, the

© Lionel Briand 2011

by

26

[.research laboratory |

Algorithms for Test Minimization

- Compute all the subsets of T, of size 1, size 2, size 3, ... and
stop when we have found one that covers all the entities
covered by Tyt

(A greedy algorithm follows the heuristic of making the locally
optimum choice at each stage with the hope of finding the
global optimum.)

Find + ETyy that covers the maximum number of entities
Timin = T U {1}

Remove t from Ty, remove the covered entities from
consideration

Repeat from step 1
There exist more sophisticated search algorithms (e.g., genetic
algorithms)

. : 27
© Lionel Briand 2011

simula - by thinking constantly about it

Test minimization: Example

Step 1: Let the basic block be the testable entity of interest. The

basic blocks for a sample program are shown here for both
main and function f1.

Step 2: Suppose the coverage of the
basic blocks when executed against

main 1 three tests is as follows:
12 G 1 G tl: main: 1, 2, 3. f1: 1, 3
45 D s D |
f t f t t2: main: 1, 3. f1: 1, 3

6 | (D s | (D
, : t3: main: 1, 3. f£l1: 1, 2, 3

(3 (3

Step3: A minimal test set for

regression testingis {tl, t3}.

2
© Lionel Briand 2011 8

[.research laboratory |

Risk

+ Test minimization is risky

- Tests removed from T ' might be
important for finding faults in P’

- Minimization techniques are not
necessarily safe

* One could discard a test that hit a modified
or impacted part of the code.

. : 29
© Lionel Briand 2011

simula - by thinking constantly about it

Regression Testing Process

Test Revalidation

(Regression) Test Selection

Test Minimization

Test Prioritization

© Lionel Briand 2011 30

[.research laboratory |

Test Prioritization

After regression test selection, Tyt might be for
testing P’

- Not enough budget to execute all those tests.
When very is desired, it might not be wise to

discard test cases as in test minimization.
In such cases use

1. Ranking tests (1sf, 2nd,)

2. Deciding to stop execution of tests after the n™h ranked test
Test prioritization requires a , or criteria for ranking
Single criterion prioritization

. cost (e.g., execution time)

- Tests with lower costs are ranked first while test with
higher costs are ranked last

: risk (expected risk of not executing a test)

+ Tests with higher risks are ranked first while test with
lower risks are ranked last - How to measure risk?

One goal of prioritization is to increase the likelihood of
in the testing process.

. : 31
© Lionel Briand 2011

[.research laboratory |

A (simplistic) procedure for automated
test prioritization

Step 1: Identify the type TE of testable entity to be used for test
minimization. Let el, e2, .. ek be the k testable entities of type
TE present in P. (TE = function, basic block ...).

Step 2: Execute P for all tests t in T, and for each t compute the
humber of distinct testable entities covered.

Step 3: Arrange the tests in T, in the order of their respective
coverage. Tests with the maximum coverage get the highest
priority and so on.

. : 32
© Lionel Briand 2011

[.research laboratory |

Prioritization Refinements

Use . for each test t, all tests
ordered before it may overlap in coverage, and the
incremental coverage of t may be much less

- Use greedy algorithm: Select highest coverage test case
first, then re-compute incremental coverage for other
test cases. Select test case with highest incremental
test coverage eftc.

Account for among test
cases: test cases may not be independent, some

may need to be run before others

Account for , for example
(incremental) coverage of modified testable
entities

Prioritization requires more complex algorithms

33
© Lionel Briand 2011

simula : - by thinking constantly about it

Evaluation of Prioritization Algorithms

Let Tbe a test suite with n test

Test Case Order: A-B-C-D-E cases and let Fr‘epr‘esen'l' a set of m
faults revealed by T. Let TF,be the

o 188 first test case in the ordering T'of T
ERRS / that reveals fault /. The APFD for
=70 the test suite T is given by the
:§ 28 7 following equation:
95 gg Area=
% %8_ 50% APFD — 1_TE+TF;+...+TFm_I_ 1 <100
& g - nm 2n

0 02040608 1

Test Suite Fraction

(b)

34
© Lionel Briand 2011

Prioritization with AHP

* Analytical Hierarchy Process (AHP)
- Originally designed to prioritize requirements
- Use expert knowledge

- Comparing pairs and using information on pairs rather than ranking
everything at once
Easier to compare pairs than to rank everything
1. Pair-wise comparison of tests, assighing a value to each pair

- Different dimensions to compare pair (i,j): business value, risk,, cosft,
frequency of use (by users)

Numerical value Explanation

1 Two test cases have equal importance.

3 Test case i has a slightly higher importance value than test case j.

5 Test case 1 has a strongly higher importance value than test case j.

7 Test case 1 has a very strongly higher importance value than test case j.

9 Test case 1 has an absolute higher importance value than test case j.

Reciprocals If test case i has one of the numerical values when it compares with test case j,

then test case j has the reciprocal value when compared with i.

35
© Lionel Briand 2011

Prioritization with AHP (cont.)

2. Build a table tcr | 2 | 13 | Tca
- Rows and columns are test cases TC1 | 1 13 5 7

- Cells show the evaluation of pairs. LS . L

. TC3 1/5 1/7 1 1/3
3. Modify table T s ; 1

i. Sum columns
ii. Divide cells by column sum
iii. Compute sum for row

iv. Divide row sum by number of test cases and
obtain a priority

TCl TC2 TC3 TC4 Sum Priority

TC1 | 0230 | 0.208 | 0.3125 | 0.404 | 1.1545 | 0.29 |::> Prioritization:

TC2, TC1, TC4, TC3
TC2 | 0.690 | 0.629 | 04375 | 0519 | 2.2755 | 0.57
TC3 | 0.046 | 0.088 | 0.0625 | 0.019 | 02155 | 0.05
TC4 | 0.033 | 0.069 | 0.1875 | 0.058 | 0.3475 | 0.09
Sum | 4342 | 1587 | 16 | 1733 | NA | NA

Scalability issue:

Instead of comparing test case
pairs, compare the corresponding
use cases.

3
© Lionel Briand 2011 6

simula - by thinking constantly about it

Tools

Regression testing requires tools (automation)
- Instrumentation tool to compute traces
- Tools to build control flow graphs, build traces and slices

- Tools implementing selection, minimization, prioritization
algorithms

"Un-automated regression testing is equivalent to no regression
testing."

Existing tools:
- Capture/replay for GUIs
- DejaVOO (Java): research

- 1];elcor'dia Software Visualization and Analysis Toolsuite (xSuds)
orC

- ?2?

A few tools perform white-box regression testing (analysis of
source code)

No tools for black/grey-box regression testing

3
© Lionel Briand 2011 ’

[.research laboratory |

General References

Mathur, AP., "Foundations of Software Testing", Pearson,
2008

Leung, K.N., White, L., "Insights into Regression Testing",
Proc. IEEE International Conference on Software
Maintenance (ICSM), pp. 60-69, 1989.

Rothermel, G, Harrold, M.J., "A Safe, Efficient Regression
Test Selection Technique,” ACM Transactions on Software
Engineering and Methodology, 6(2), pp.173-210, 1997

Briand, L, Labiche, Y, He, S, "Automating regression test
selection based on UML designs”, Information and Software
Technology (Elsevier), 2009

38
© Lionel Briand 2011

[.research laboratory |

References for DB Applications

David Willmor and Suzanne M. Embury, "A safe regression test
selection technique for database-driven applications”, ICSM 2005

Scott W. Ambler and Pramod J. Sadalage, "Refactoring Databases:
Evolutionary Database Design”, 2006

Florian Haftmann, Donald Kossmann, Alexander Kreutz, "Efficient
Regression Tests for Database Applications”, CIDR Conference,
2005

3
© Lionel Briand 2011 9

