
© Lionel Briand 2011 
1 

An Introduction to Regression Testing 

Prof. Lionel Briand 
Ph.D., IEEE Fellow 



© Lionel Briand 2011 
2 

Objectives 

•  Problem definition 
•  Outline types of solutions 
•  Discuss situation in SOFIE 
•  References 



© Lionel Briand 2011 
3 

Definition 

Version 1 
1.  Develop P 
2.  Test P with test set T 
3.  Release P 

Version 2 
1.  Modify P into P’ 
2.  Test P’ for new functionalities 
3.  Perform regression testing on P’ to

 ensure that the code carried over
 from P behaves correctly 
•  Main principle: reusing tests derived

 for P! 
•  Identifying T’, a subset of T 

4.  Release P’ 



© Lionel Briand 2011 
4 

Terminology 

•  Regress = returning to a previous, usually worse, state 
•  Regression testing 

–  Portion of the testing life cycle 
–  During which program P has been modified into program

 P’ (maintenance) 
–  P’ needs specific testing attention to ensure that 

•  newly added or modified code behaves correctly 
•  code carried over unchanged, continues to behave correctly 

•  Important problem:  
–  Regression testing constitute the vast majority of testing

 effort in many software development environments. 



© Lionel Briand 2011 
5 

Regression Testing vs. Testing 
Regression Testing is not a simple extension of testing 
Main differences are: 
1.  Availability of test plan 

–  Testing starts with a specification, an implementation of the
 specification and a test plan (black-box and/or white-box test
 cases). Everything is new 

–  Regression testing starts with a (possibly modified)
 specification, a modified program, and an old test plan (which
 requires updating) 

2.  Scope of test 
–  Testing aims to check the correctness of the whole program 
–  Regression testing aims to check (modified) parts of the

 program 
3.  Time allocation 

–  Testing time is normally budgeted before the development of a
 product (part of development costs) 

–  Regression testing time should be accounted for in the planning
 of a new release of a product 



© Lionel Briand 2011 
6 

Regression Testing vs. Testing (cont.) 

4.  Development information 
–  During testing, knowledge about the development process is

 available (it is part of it) 
–  During regression testing, the testers may not be the ones who

 developed/tested the previous versions! 
5.  Completion time 

–  Completion time for regression testing should normally be much
 less than that for exhaustive testing (only parts are tested) 

6.  Frequency 
–  Testing occurs frequently during code production 
–  Regression testing occurs many times throughout the life of a

 product, possibly once after every modification is made to it 



© Lionel Briand 2011 
7 

Regression Testing Process 

1.  Test revalidation/selection/ 
minimization/prioritization 

2.  Test set up 

3.  Test sequencing 

4.  Test execution 

5.  Output comparison 

6.  Fault mitigation 

P in modified into P’ Not all the tests for P will work on P’, some do not 
need to be executed, some may be redundant, there 

may be too many of them and we have to rank them. 

Placing P’ in its intended or simulated 
environment ready to receive test data. 

The sequence in which tests are 
inputted to an application may 

or may not be of concern. 

The execution of the test set. 

Each test needs verification 

What do we do when a fault is 
revealed? 



© Lionel Briand 2011 
8 

Regression Testing Process (cont.) 
•  Test Revalidation 

–  Checking which tests for P remain valid for P’. 
–  To ensure that only test that are applicable to P’ are used

 during regression testing. 
–  How can we automatically identify Obsolete test cases? 

•  Test selection 
–  Should we select and execute all tests in T ? 
–  Test only modification-traversing tests? 
–  Classification of tests: 

•  Re-testable: should be re-run 
•  Reusable: may not need to be re-run. 

  Tests in T are either Obsolete (TO), Re-testable (TRT), or Reusable
 (TRU). 



© Lionel Briand 2011 
9 

Regression Testing Process (cont.) 
•  Test minimization 

–  Discards tests seemingly redundant with respect to some
 criteria. 

–  E.g., if two tests t1 and t2 execute function f, one might keep
 only t2. 

–  Purpose: reducing the number of tests to execute for
 regression testing. 

•  Test prioritization 
–  Prioritizing tests based on some criteria 
–  Context: after revalidation, selection, minimization, one may

 still have too many test cases (cannot afford to execute them
 all). 

•  Comments: 
–  Minimization and prioritization can be considered selection

 techniques. 
–  Minimization and prioritization techniques can be used during

 testing P (not necessarily during regression testing). 



© Lionel Briand 2011 
10 

Regression Testing Process 

•  Test Revalidation 

•  (Regression) Test Selection 

•  Test Minimization 

•  Test Prioritization 



© Lionel Briand 2011 
11 

Test Revalidation 
•  Three ways that a test case may become obsolete: 

–  Program modification leads to (now) incorrect input
/output relation 

–  If P has been modified, some test cases may correctly
 specify the input/output relation, but may not be testing
 the same construct. 

•  For example, the modifications from P to P’ change
 some equivalence classes. t∈T used to exercise a
 boundary, which is no longer a boundary. t∈T is
 obsolete as it does no longer test a construct
 (boundary) of interest. 

–  A structural test case t∈T may no longer contribute to
 the structural coverage of the program. 



© Lionel Briand 2011 
12 

Regression Testing Process 

•  Test Revalidation 

•  (Regression) Test Selection 

•  Test Minimization 

•  Test Prioritization 



© Lionel Briand 2011 
13 

The Regression Test Selection Problem 

•  Let P denote the program that has been tested  
–  Using test set T  
–  Against specification S 

•  Let P’ be generated by modifying P 
–  P’ must conform to S’ 

•  S and S’ could be the same (e.g., corrective maintenance) 
•  S⊂S’ (e.g., S’ contains new features, redefined features) 

•  Regression Testing Problem 
–  Find a test set TRT on which P’ is to be tested to ensure that

 code that implements functionalities carried over from P work
 correctly. 

•  In addition P’ must be tested to ensure that newly added code
 behaves correctly. 



© Lionel Briand 2011 
14 

Regression Test Selection Techniques 
•  Test All 

–  T - TO 
–  Often not a practical solution as T - TO is often too large (too

 many test cases to run in the amount of time allocated) 
•  Random Selection 

–  Select randomly tests from T - TO 
–  The tester decides how many tests to select 
–  May turn out to be better than no regression testing at all 
–  But may not even select tests that exercise modified parts of

 the code! 
•  Selecting Modification Traversing Tests 

–  Selecting a subset of T - TO such that only tests that
 guarantee the execution of modified code and code that might
 be impacted by the modified code in P’ are selected.  

–  A technique that does not discard any test that will traverse a
 modified or impacted statement is known as a “safe” regression
 test selection technique. 



© Lionel Briand 2011 
15 

Overview 

T 

P 

P’ 

Functionalities 
retained across 
P and P’ 

Modified and 
newly added code 

TO 
(obsolete) TRU 

(re-usable) 
TRT 

(re-testable) 

T’ 

TN 
(new) 

TRT regression 
tests 



© Lionel Briand 2011 
16 

Test Selection Using Execution Traces 
1.  P is (has been) executed and execution traces are (have been)

 recorded 
–  Execution trace = sequence of control flow graph (CFG) nodes

 hit during one test execution 
–  trace(t) = execution trace of test case t. 
–  test(n) = set of tests that hit node n at least once. 
 We consider execution traces for T - TO. 

2.  P’ is compared with P 
•  Build the control flow graphs G and G’ of P and P’, respectively 

•  G and G’ account for control flow, as well as function calls and
 variable declarations 

•  Identify nodes (edges) in P and P’ that are equivalent or not 
•  Different techniques exist (e.g., syntax trees) 

3.  Selection 
•  For each node n∈G that does not have an equivalent node in G’ 
•  TRT = TRT ∪ test(n) 



© Lionel Briand 2011 
17 

Example 

An execution trace of program P  for some test t in T is the sequence 
of nodes in G traversed when P is executed against t. As an example, 
consider the following program.  



© Lionel Briand 2011 
18 

Example: Control Flow Graph 

Here is the CFG for our example program. 



© Lionel Briand 2011 
19 

Example: Traces 

Now consider the following set of three tests and 
the corresponding trace. 



© Lionel Briand 2011 
20 

Example: Test vector 

A test vector for node n, denoted by test(n), is the set of tests that 
traverse node n in the CFG. For program P we obtain the following test 
vectors. 



© Lionel Briand 2011 
21 

Example: Syntax trees 

A syntax tree is constructed for each node of CFG(P) and CFG(P’). This 
is used to identify differences in nodes (i.e., compare trees).  Recall 
that each node represents a basic block. Here are sample syntax trees 
for the example program.  



© Lionel Briand 2011 
22 

Test selection example  

Suppose that function g1 in P is modified as follows.  

TRT={t1, t3}. No different CFG node is 
exercised with t2 



© Lionel Briand 2011 
23 

Test Selection Using Dynamic Slicing 
Definition: dynamic slice 

–  Let P be the program under test 
–  Let t be a test case against which P has been executed 
–  Let l be a location in P where variable v is used. 
–  The dynamic slice of P with respect to t and v is the set of

 statements/nodes (CFG) in P that lie in trace(t) and did affect
 the value of v at l. 

1.  Computing dynamic slices 
–  Many different algorithms, with various complexities and

 accuracies 
2.  P’ is compared with P 
3.  Selection 

•  Let DS(t) denote a dynamic slice of P with respect to t (t∈T)
 and an output variable of P. 

•  Let n be a node in P (CFG) modified to generate P’ 
•  For all output variables, if n ∈ DS(t) then re-test t (TRT = TRT ∪

 {t}) 



© Lionel Briand 2011 
24 

Rothermel and Harrold Study 



© Lionel Briand 2011 
25 

Regression Testing Process 

•  Test Revalidation 

•  (Regression) Test Selection 

•  Test Minimization 

•  Test Prioritization 



© Lionel Briand 2011 
26 

Test Minimization 

•  Regression test selection finds a subset TRT of T. 
•  Suppose P contains n testable entities 

–  Functions, basic blocks, conditions, … 
•  Suppose that tests in TRT cover m<n of the testable entities 

–  There is likely an overlap amongst the entities covered by two
 tests in TRT 

•  Is it possible (and beneficial) to reduce TRT to TMIN ? 
–  such that |TMIN| << |TRT| and 
–  each of the m entities covered by tests in TRT are also covered by

 tests in TMIN 
•  Question 

–  Will TMIN have the same fault detection effectiveness as TRT ? 
•  Answer 

–  It depends on the modifications (from P to P’), the faults, the
 entities used. 



© Lionel Briand 2011 
27 

Algorithms for Test Minimization 

•  Naïve algorithm 
–  Compute all the subsets of TRT of size 1, size 2, size 3, … and

 stop when we have found one that covers all the entities
 covered by TRT 

•  Greedy algorithm 
(A greedy algorithm follows the heuristic of making the locally

 optimum choice at each stage with the hope of finding the
 global optimum.) 

1.  Find t ∈TRT that covers the maximum number of entities 
2.  TMIN = TMIN ∪ {t} 
3.  Remove t from TRT, remove the covered entities from

 consideration 
4.  Repeat from step 1 

•  There exist more sophisticated search algorithms (e.g., genetic
 algorithms) 



© Lionel Briand 2011 
28 

Test minimization: Example 
Step 1: Let the basic block be the testable entity of interest. The 

basic blocks for a sample program are shown here for both 
main and function f1. 

Step 2: Suppose the coverage of the 
basic blocks when executed against 
three tests is as follows: 

t1: main: 1, 2, 3. f1: 1, 3 

t2: main: 1, 3. f1: 1, 3 

t3: main: 1, 3. f1: 1, 2, 3 

Step3: A minimal test set for 
regression testing is {t1, t3}. 



© Lionel Briand 2011 
29 

Risk 

•  Test minimization is risky 
–  Tests removed from T ’ might be

 important for finding faults in P’ 
– Minimization techniques are not

 necessarily safe 
• One could discard a test that hit a modified

 or impacted part of the code. 



© Lionel Briand 2011 
30 

Regression Testing Process 

•  Test Revalidation 

•  (Regression) Test Selection 

•  Test Minimization 

•  Test Prioritization 



© Lionel Briand 2011 
31 

Test Prioritization 
•  After regression test selection, TRT might be overly large for

 testing P’ 
–  Not enough budget to execute all those tests. 

•  When very high quality software is desired, it might not be wise to
 discard test cases as in test minimization.  

•  In such cases use Test prioritization: 
1.  Ranking tests (1st, 2nd, …) 
2. Deciding to stop execution of tests after the nth ranked test 

•  Test prioritization requires a criterion, or criteria for ranking 
•  Single criterion prioritization 

–  Criteria 1: cost (e.g., execution time) 
•  Tests with lower costs are ranked first while test with

 higher costs are ranked last 
–  Criteria 2: risk (expected risk of not executing a test) 

•  Tests with higher risks are ranked first while test with
 lower risks are ranked last – How to measure risk? 

•  One goal of prioritization is to increase the likelihood of revealing
 faults earlier in the testing process. 



© Lionel Briand 2011 
32 

A (simplistic) procedure for automated 
test prioritization 

Step 1: Identify the type TE of testable entity to be used for test 
minimization. Let e1, e2, .. ek be the k testable entities of type 
TE present in P. (TE = function, basic block …). 

Step 2: Execute P for all tests t in TRT and for each t compute the 
number of distinct testable entities covered. 

Step 3: Arrange the tests in TRT in the order of their respective 
coverage. Tests with the maximum coverage get the highest 
priority and so on. 



© Lionel Briand 2011 
33 

Prioritization Refinements 

•  Use incremental coverage: for each test t, all tests
 ordered before it may overlap in coverage, and the
 incremental coverage of t may be much less  
–  Use greedy algorithm: Select highest coverage test case

 first, then re-compute incremental coverage for other
 test cases. Select test case with highest incremental
 test coverage etc. 

•  Account for sequencing constraints among test
 cases: test cases may not be independent, some
 may need to be run before others 

•  Account for modifications, for example
 (incremental) coverage of modified testable
 entities 

•  Prioritization requires more complex algorithms 



© Lionel Briand 2011 
34 

Evaluation of Prioritization Algorithms 

Let T be a test suite with n test 
cases and let F represent a set of m 
faults revealed by T.  Let TFi be the 
first test case in the ordering T’ of T 
that reveals fault i.  The APFD for 
the test suite T’ is given by the 
following equation:  

€ 

APFD = 1 −
TF1 + TF2 + ... + TFm

nm
+
1
2n

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
×100



© Lionel Briand 2011 
35 

Prioritization with AHP 
•  Analytical Hierarchy Process (AHP) 

–  Originally designed to prioritize requirements 
–  Use expert knowledge 
–  Comparing pairs and using information on pairs rather than ranking

 everything at once 
•  Easier to compare pairs than to rank everything 

1.  Pair-wise comparison of tests, assigning a value to each pair 
–  Different dimensions to compare pair (i,j): business value, risk,, cost,

 frequency of use (by users) 

Numerical value Explanation 
1 Two test cases have equal importance. 
3 Test case i has a slightly higher importance value than test case j. 
5 Test case i has a strongly higher importance value than test case j. 
7 Test case i has a very strongly higher importance value than test case j. 
9 Test case i has an absolute higher importance value than test case j. 

Reciprocals If test case i has one of the numerical values when it compares with test case j,
 then test case j has the reciprocal value when compared with i.  



© Lionel Briand 2011 
36 

Prioritization with AHP (cont.) 
2.  Build a table 

–  Rows and columns are test cases 
–  Cells show the evaluation of pairs. 

3.  Modify table 
i.  Sum columns 
ii.  Divide cells by column sum 
iii.  Compute sum for row 
iv.  Divide row sum by number of test cases and

 obtain a priority 

TC1 TC2 TC3 TC4 
TC1 1 1/3 5 7 
TC2 3 1 7 9 
TC3 1/5 1/7 1 1/3 
TC4 1/7 1/9 3 1 

1 

TC1 TC2 TC3 TC4 Sum Priority 
TC1 0.230 0.208 0.3125 0.404 1.1545 0. 29 
TC2 0.690 0.629 0.4375 0.519 2.2755 0.57 
TC3 0.046 0.088 0.0625 0.019 0.2155 0.05 
TC4 0.033 0.069 0.1875 0.058 0.3475 0.09 
Sum 4.342 1.587 16 17.33 N/A N/A 

Prioritization: 
TC2, TC1, TC4, TC3 

Scalability issue: 
Instead of comparing test case 
pairs, compare the corresponding 
use cases. 



© Lionel Briand 2011 
37 

Tools 
•  Regression testing requires tools (automation) 

–  Instrumentation tool to compute traces 
–  Tools to build control flow graphs, build traces and slices 
–  Tools implementing selection, minimization, prioritization

 algorithms 
•  “Un-automated regression testing is equivalent to no regression

 testing.” 
•  Existing tools: 

–  Capture/replay for GUIs 
–  DejaVOO (Java): research 
–  Telcordia Software Visualization and Analysis Toolsuite (xSuds)

 for C  
–  ?? 

•  A few tools perform white-box regression testing (analysis of
 source code) 

•  No tools for black/grey-box regression testing 



© Lionel Briand 2011 
38 

General References 
•  Mathur, A.P., “Foundations of Software Testing”, Pearson,

 2008 
•  Leung, K.N., White, L., “Insights into Regression Testing”,

 Proc. IEEE International Conference on Software
 Maintenance (ICSM), pp. 60-69, 1989. 

•  Rothermel, G, Harrold, M.J., “A Safe, Efficient Regression
 Test Selection Technique,” ACM Transactions on Software
 Engineering and Methodology, 6(2), pp.173-210, 1997 

•  Briand, L, Labiche, Y, He, S, “Automating regression test
 selection based on UML designs”, Information and Software
 Technology (Elsevier), 2009 



© Lionel Briand 2011 
39 

References for DB Applications 

•  David Willmor and Suzanne M. Embury, “A safe regression test
 selection technique for database–driven applications”, ICSM 2005 

•  Scott W. Ambler and Pramod J. Sadalage, “Refactoring Databases:
 Evolutionary Database Design”, 2006 

•  Florian Haftmann, Donald Kossmann, Alexander Kreutz, “Efficient
 Regression Tests for Database Applications”, CIDR Conference,
 2005 


