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Plan for todayPlan for today 

• G&W, “DIP”, Ch.3.3.3 (pages 827-839)

• Why texture, and what is it?Why texture, and what is it?

• Statistical descriptors
– First order– First order

• Mean, variance, …, moments, …

– Second orderSecond order
• Gray level co-occurrence matrices

– Higher orderHigher order
• Fourier analysis
• Gray level runlength matrices

C f l l
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• Cooccurrence of gray level runs

What is segmentation?What is segmentation?

• A process that splits the image into 
meaningful regions. 

• One of the most important elements of 
a complete image analysis system.

• Segmentation gives us regions and 
objects that we may later describe and 
recognizerecognize. 

• The simplest case: two classes:
Foreground– Foreground

– Background
”Simple” example: 

fi d b l f OCR
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find symbols for OCR

Segmentation problemsSegmentation problems

• Usually several objects in an image• Usually several objects in an image.
• Objects are seldom alike, 

even if they are of same classeven if they are of same class.
• Often several classes.
• Lighting may vary over image• Lighting may vary over image.
• Reflection, color etc. may vary.

• We perceive and utilize 
– intensity– intensity, 
– color, 
– and texture. A more complex example: 
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What and where is the  
object in this image?



What is texture?What is texture?

• Intuitively obvious “Spatially extended• Intuitively obvious, 
but no precise definition exists
– ”fine, coarse, grained, smooth” etc

Spatially extended 
patterns of more or 
less accurate 
repetitions of some fine, coarse, grained, smooth  etc

• Texture consists of texture primitives, texels,
– a contiguous set of pixels with some tonal 

p
basic texture element, 
called texels.”

g p
and/or regional property

• Texture can be characterized by
( l ) f l– intensity (color) properties of texels

– structure, spatial relationships of texels

A texel is the characteristic object• A texel is the characteristic object 
that the texture consists of (the ”brick in the wall”) 

T t hi hl l d d t
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• Textures are highly scale dependent.

How do we segment these images?How do we segment these images?
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What is a texel?What is a texel?
Texel = texture element, the fundamental unit of texture space.Texel  texture element, the fundamental unit of texture space.
Can be defined in a strict geometrical sense, or statistically.

Note that you can define texels in any image scale, y y g
and that the best image scale for analysis is problem dependent.
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Uses for texture analysisUses for texture analysis
• Segment an image into regions with the 

same texture, i.e. as a complement to 
graylevel or color

• Recognize or classify objects in images 
based on their texture

• Find edges in an image, i.e. where the 
texture changes

• ”shape from texture”

• object detection, compression, synthesis

• Industrial inspection:
– find defects in materials
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Uses for texture analysis - IIUses for texture analysis II
• Reliable cancer prognostics.Reliable cancer prognostics.

• Microscopy images of 
monolayer cell nuclei from an 
early stage of ovarian cancer. 

• Four monolayer cell nuclei from 
a good prognosis sample (left)a good prognosis sample (left) 
and four nuclei from a bad 
prognosis sample (right). 

• Aim: small set of differentiating  
textural features
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textural features.

FeaturesFeatures

• Image features can be found from:

– Edges
• Gives the (sometimes incomplete) borders between image regions

– Homogeneous regions
• Mean and variance are useful for describing

the contents of homogeneous regionsthe contents of homogeneous regions

– The texture of the local (sliding) window
A f t th t d ib h th l l i i d i• A feature that describes how the gray levels in a window varies, 
e.g. roughness, regularity, smoothness, contrast etc.
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A simple approach to textureA simple approach to texture
• To be able to find changes in the 

texture of an image a simpletexture of an image, a simple 
strategy is to perform texture 
measurements in a sliding window

• Most texture features can be 
summed up as scalars,
so we can assign features g
to each of the image pixels 
corresponding to window centers

F h i l h• For each pixel, we now have a 
description of the ”texture” in its 
neighborhood

Compute a local texture feature 
in a local window. 
Slid th i d d i th

• Beware of image boundaries,  
artifacts will occur!

Slide the window around in the 
image. 
Each computed texture feature 
gives a new texture feature image!
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gives a new texture feature image!

Computing texture imagesComputing texture images
• Select a window size 

and select a texture featureand select a texture feature

• For each pixel (i,j) in the image:
– Center the window at pixel (i,j)
– Compute the texture feature
– Assign the computed value to the center ss g t e co puted a ue to t e ce te

pixel (i,j) in a new output image 
of the same size

• This is similar to filtering

• Pixels close to the image border can be• Pixels close to the image border can be 
handled in the same manner as for 
filtering/convolution
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Texture feature image exampleTexture feature image example

Input image.

For each pixel, compute
l l h it

New homogeneity image.

Try to get an image 
h i l b l i t

Segmented feature image.

a local homogeneity
measure in a local sliding 
window.

where pixels belonging to 
the same texture type get 
similar values.
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”Texture” – description of regionsTexture  description of regions

• Remember: we estimate local properties (features) to be able to 
isolate regions which are similar in an image (segmentation), 
usually with the goal of object description 

d ibl l t id tif th i ( l ifi ti )and possibly later identify these regions (classification), 

• One can describe the ”texture” of a region by:
th h l it i t ti– smoothness, roughness, regularity, orientation...

• Problem: we want the local properties to be as ”local” as possible

L i i d• Large region or window 
– Precise estimate of features
– Imprecise estimate of location

• Small window 
– Precise estimate of location

Imprecise estimate of feature values
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– Imprecise estimate of feature values

Uncertainty relationUncertainty relation

L i i d• Large region or window 
– Precise feature value, but imprecise boundaries between regions

• Small window 
– Precise estimate of region boundaries, but imprecise feature value

• Related to Heisenberg’s uncertainty relation
in physics:in physics:

∆x∆p ≈ h
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Texture description is scale dependentTexture description is scale dependent

• What is our goal for texture description in the image?What is our goal for texture description in the image? 

• Scale impacts the choice of texels, 
and vice versaand vice versa

• The curtain can be described as 
f l h d– a repetition of single threads, 

– a configuration of meshes 

– a repetition of folds.
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Example of scale dependenceExample of scale dependence

Original image Variance feature
t d i i d

Variance feature
computed in windowcomputed in window

of size 3x3 
computed in window
of size 15x15 
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Statistical texture descriptionStatistical texture description
• Describe texture in a region by a vector of statistics g y

(feature vector)

d f l l h (i)– First order statistics from graylevel intensity histogram p(i)
• Mean, variance, 3. and 4. order moment

– Second order statistics, 
describing relation between pixel pairs 

H d th l l f i l i d j t di t d• How does the gray levels of pixels i and j at a distance d
depend on each other. Are they similar or different ? 

– Higher order statistics, 
• describe region by runs of similar pixels
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First order statistics from histogram - IFirst order statistics from histogram I 

• Mean (hardly a useful feature)

• Variance (a more credible feature, measures region "roughness") 

• Skewness (are the texel intensities usually darker/lighter than average?)

• Kurtosis (how ”peaked" is the graylevel distribution?)• Kurtosis (how peaked  is the graylevel distribution?)
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First order statistics from histogram - IIFirst order statistics from histogram II

• Entropy 
(how uniform is the graylevel distribution?)( g y )

• Energy 
(how non-uniform is the graylevel distribution?)  
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Using variance estimatesUsing variance estimates

• Variance, 2, is directly a measure of ”roughness”
– An unbounded measure ( 2 ≥ 0)

• A measure of ”smoothness” is

– A bounded measure (0 ≤ R ≤ 1)
• R is close to 0 for homogenous areas

R tends to 1 as 2 ”roughness” increases• R tends to 1 as 2, ”roughness”, increases
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Using variance estimatesUsing variance estimates

• “Coefficient of variation”• Coefficient of variation

– where w and w are computed within window  w x w

– CV is intensity scale invariant:

b i i hif i i– but not intensity shift invariant:

– Alternatives:
• use median instead of mean
• interpercentile-distance instead of standard deviation
• Also note “variance to mean” and “signal to noise”
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• Also note variance-to-mean  and signal-to-noise

SkewnessSkewness 

• Higher order moments can also be used for texture description

• Skewness 

– Skewness is a measure of the asymmetry of the probability distribution S e ess s a easu e o t e asy et y o t e p obab ty d st but o
– Measures if there is a "wider" range of either darker or lighter pixels 

– Negative skew: The left tail is longer; the mass of the distribution is g g ;
concentrated on the right of the figure. 

– Positive skew: The right tail is longer; the mass of the distribution is 
concentrated on the left of the figure (more darker pixels than average)
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concentrated on the left of the figure (more darker pixels than average).

Skewness exampleSkewness example

Region 1 Histogram - Region 1 Skewness feature
Computed in 15x15 window

Region1: all gray levels occur
Histogram is fairly symmetric
Skewness is gray (average)

Region2: bright pixels more 
frequent. Histogram asymmetric.
Negative skew: Skewness is dark. 
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Region 2 Histogram - Region 2



KurtosisKurtosis

K t i• Kurtosis

– Measure of  "peakedness" of the probability distribution.

– Low kurtosis distribution has a more rounded peak 
with wider "shoulders“

– A high kurtosis distribution has a sharper "peak" and flatter "tails"
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First order statistics - EntropyFirst order statistics Entropy

• Entropy (how uniform is the graylevel distribution?)• Entropy (how uniform is the graylevel distribution?)

• If all pixel values are the same, H = 0.
• If all pixel values are equally probable:p q y p

– There are G = 2b gray levels, each having a probability  p(i) = 1/G = 1/2b, so:

bH
b

 


)1(log)1(log112

• We see that 0  H  b (b = number of bits per pixel)

bH b
i

bb  


)
2

(log)
2

(log
2 2

0
2

• Here, we use entropy as a texture feature, 
computed in a local window
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computed in a local window.

Entropy exampleEntropy example

Region 1 Histogram - Region 1

Entrop feat reEntropy feature
Computed in 15x15
Window

Region1: high entropy

Region2: low entropy
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Region 2 Histogram - Region 2

First order statistics - EnergyFirst order statistics Energy

• Energy (how non-uniform?)

• A measure of homogeneityA  measure of homogeneity

• If all P(i) are equal (histogram is uniform), E=1/G

• If the image contains only one gray level: 
E=(G-1)0+11=1E=(G 1)0+11=1

• Thus, 1/G  E  1
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1 order statistics discussion1. order statistics discussion
• 1. order statistics can separate two regions 

even if μ μ as long as 2 2 or skewness/kurtosis differeven if μ1 = μ2 , as long as  2
1  2

2 , or skewness/kurtosis differ
• The statistics of a pixel (x, y) is found in a local window
• Problems:

– Edges around objects are exaggerated
• Solution: use adaptive windows

– 1. order statistics does not describe geometry or context1. order statistics does not describe geometry or context
• Cannot discriminate between

S l ti• Solution:

– Calculate 1. order statistics with different 
resolutions, and obtain indirect information ,
about 2. and higher order statistics.

– Simply use 2. or higher order statistics.
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Second order statisticsSecond order statistics

• Gray-level Co-Occurrence matrices
– Intensity-change-”histograms” 

as a function of distance and direction

– By far the most popular texture description method 
d i i li idue to its simplicity

– The co-occurrence matrix is 
an estimate of the second order joint probability, 

• which is the probability of 
going from gray level i to gray level j– going from gray level i  to gray level j, 

– given the distance d   between two pixels 
– along a given direction θ.
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g g

Gray Level Coocurrence Matrices (GLCM)Gray Level Coocurrence Matrices (GLCM)

• Matrix element P(i,j) in a GLCM is 2. order probability of changing 
from graylevel i to j when moving a distance d in the direction 
of the image, or equivalent, (∆x, ∆y)

• From a M × N image with G graylevels, and f(m,n) is the intensity. 
Then                                                         , where

and

• Alternative notation, dependent on distance and direction, P(i,j | d, )
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GLCMGLCM
• From one window of size ww we get one GLCM matrix
• The dimension of the co-occurrence matrix is GxG

if we have G gray-levels in the image.
• Choose a distance d and a direction • Choose a distance d and a direction 

In this example, 
d=1 and =0

• Check all pixel pairs with distance d and direction  inside the• Check all pixel pairs with distance d and direction  inside the 
window. Q(i,j|d,) is the number of pixel pairs where pixel 1 in 
the pair has pixel value i and pixel 2 has pixel value j.
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GLCMGLCM

Q(i,j|d,)

gray

gray
level j

1 2 1 0 
0 1 3 0g y

level i 0 1 3 0 
0 0 3 5  
0 0 2 2  

d=1,  =0 correspond to dy=0, dx=1

Thi h i hb tThis row has no neighbors to 
the right. The number of pixel 
pairs that we can compute is 
N(M-1) = 5  (5-1) = 20

P(i,j|d,) is normalized by W, the number of 
pixel pairs inside the window.
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GLCM – practical issuesGLCM practical issues

• The matrix must have a sufficient  “average occupancy level” :

R d b f l l– Reduce number of graylevels 
(Less precise description if the texture has low contrast)

• Select L =number of gray levels
• Rescale the image if necessary to use these levels using (histogram transform)• Rescale the image if necessary to use these levels using (histogram transform)
• Requantize the scaled image from G to L gray levels before GLCM 

computation

– Increase window size (Errors due to changes in texture) 

• Heuristics:
– 16 graylevels is usually sufficient 
– window should be 31 x 31 – 51 x 51 pixels.
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Preprocessing examplesPreprocessing examples

Original image Histogram-equalized
and requantized to
16 gray levels
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16 gray levels

GLCM matrices for subregionsGLCM matrices for subregions

Nose Fur2

GLCM matrices

Subregions of image

d=1, =0

GLCM matrix
d=1, =90

GLCM matrix
d=1, =0Fur1
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GLCMGLCM
• Usually a good idea to reduce the number of (d,) variations evaluated

• Simple pairwise relations: 
– P(d,00) = P t (d,1800)  

P(d 450) P t (d 2250)

90

– P(d,450) = P t (d,2250)
– P(d,900) = P t (d,2700) 
– P(d,1350) = P t (d,3150)

180 0

– Symmetric GLCM:
• Count “forwards” + “backwards”

270

• Isotropic cooccurrence matrix by averaging 
P(),   {0o, 45o, 90o, 135o}

Be a e of diffe ences in effecti e indo si e!– Beware of differences in effective window size!

• An isotropic texture is equal in all directions
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• If the texture has a clear orientation, we select  according to this.

Isotropic GLCM exampleIsotropic GLCM example
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How to use the GLCMHow to use the GLCM

• Usually, used by extracting secondary features from GLCM
– Haralick et al. and Conners et al.

Features are usually strongly correlated– Features are usually strongly correlated, 
using more than 4-5 simultaneously is not advisable

– You may need to evaluate several distances d
Would you perform anti aliasing filtering for d>1 ?• Would you perform anti-aliasing filtering for d>1 ?

– Optimal set of features is problem dependent

l d bl b h f• It is also advisable to preprocess by histogram transform 
to remove effect of absolute gray level.

Of k h f ” i ” i i• Often, we want to make the features ”rotation” invariant 
by using the isotropic GLCM (remember different weights).
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Classical GLCM featuresClassical GLCM features

• There are a number of scalar  texture features that characterize 
the cooccurrence matrix directly and the image indirectly. 

• Many of these GLCM features may be seen as a weighted sum 
of the cooccurrence matrix element values, where the weighting o e cooccu e ce a e e e a ues, e e e e g g
applied to each element is based on a given weighting function.

• By varying this weighting function different types of information• By varying this weighting function, different types of information 
about the texture can be extracted. 

• The weighting functions fall into two general categories:
1. Weighting based on the value  of the GLCM element
2 Weighting based on the position within the GLCM
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2. Weighting based on the position  within the GLCM



Value-based GLCM FeaturesValue based GLCM Features
• Angular Second Moment,Angular Second Moment,

– ASM is a measure of homogeneity of an image. 
– Homogeneous scene will contain a few gray levels, 

giving a GLCM with few but high values of P(i,j). 
– Thus, the sum of squares will be high.u , u o qua b g

• Entropy, 

– Inhomogeneous scenes have high entropy, 
while a homogeneous scene has a low entropy.while a homogeneous scene has a low entropy.

– Maximum Entropy is reached when 
all 2. order probabilities are equal.

– Note that 0 ≤ P(I,j) ≤ 1.
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Note that 0 ≤ P(I,j) ≤ 1.

Position-based GLCM FeaturesPosition based GLCM Features

•Inverse Difference Moment (also called homogeneity)

– So the weight function is g

– IDM is influenced by the homogeneity of the image.IDM is influenced by the homogeneity of the image. 

– Because of the weighting factor, IDM will get 
small contributions from inhomogeneous areas (i  j).small contributions from inhomogeneous areas (i  j). 

– The result is a low IDM value for inhomogeneous images, 
and a relatively higher value for homogeneous images.
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and a relatively higher value for homogeneous images.

Position-based GLCM Features-2Position based GLCM Features 2

•Inertia, also called Contrast:

•The Inertia weighting function is zero along the diagonal (i = j), 
and increases towards (G − 1)2 away from the diagonal.

•Thus, it will favor contributions from P(i, j) away from the diagonal (i 
≠ j), i.e., give higher values for images with high local contrast.
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GLCM feature image examples w= 15GLCM feature image examples, w= 15

GLCM contrast

GLCM contrast is

GLCM variance GLCM entropy

GLCM entropy isGLCM contrast is
•negative correlated with IDM 
•positively correlated with   
variance

GLCM entropy is 
negatively correlated
with ASM 

F2 29.08.16 INF 4300 44



GLCM feature image examples, w= 15GLCM feature image examples, w  15

GLCM IDM GLCM ASM GLCM correlation 
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Aristotle and OccamAristotle and Occam

• Our search for models or hypotheses that describe the laws of 
nature is based on a ”minimum complexity principle”. 

A i t tl (384 322 BC) Ph i b k I h t VI• Aristotle (384-322 BC), Physics, book I, chapter VI: 
‘The more limited, if adequate, is always preferable’.

• William of Occam (1285-1349): 
‘Pluralitas non est ponenda sine necessitate’Pluralitas non est ponenda sine necessitate .

• The simplest model that explains the data is the best. 

• So far, “Occam’s Razor”  has generally motivated the o a , O a a o a g a y o a d
search and selection of reduced dimensionality feature sets. 

• It should also motivate us to generate
only a few powerful featuresonly a few powerful features.
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The ”curse-of-dimensionality”The curse of dimensionality

• Also called ”peaking phenomenon”• Also called peaking phenomenon .

• For a finite training sample size,     
the correct classification rate initiallythe correct classification rate initially 
increases when adding new features, 
attains a maximum and then begins 
to decreaseto decrease.

• The implication is that:
F hi h l i C t l ifi ti t• For a high measurement complexity, 
we will need large amounts of 
training data in order to attain 
th b t l ifi ti f

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

the best classification performance.

• => 5-10 samples / feature / class.

q p p
of the two classes is assumed.

Illustration from G.F. Hughes (1968).
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Feature subsetsFeature subsets

The goal is to find the subset of observed features which• The goal is to find the subset of observed features which 
– best characterizes the differences between groups  
– is similar within the groups 
– Maximize the ratio of between-class and within-class variance. 

• If we want to perform an exhaustive search through D• If we want to perform an exhaustive search through D 
features for the optimal subset of the d ≤ m “best 
features”, the number of combinations to test is 

I ti l f d t b f f t !
 

 


m

d ddD
Dn

1 !!
!

• Impractical even for a moderate number of features!
m ≤ 5, D = 100  =>  n = 79.374.995
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Low-D adaptive weighting functionsLow D adaptive weighting functions

• Instead of a large number of predefined, non-adaptive features, g p , p ,
we could find a few weighting functions adapted to the images. 

• This would extract information from the parts of the GLCM matrix that• This would extract information from the parts of the GLCM matrix that 
actually contain information about texture differences between e.g. two 
different clinical classes. 

• Given a number of images of each class, compute the average P(i,j) 
and variance σ(i,j) of P for each position (i,j) of the GLCM of each class.

• Then for each position (i,j), compute the class difference ∆=P1-P2, 
and the class distance J(i,j) = 2∆2/(σ1

2+ σ2
2). (Mahalanobis distance.)( ,j) /( 1 2 ) ( )

• Use the Malalanobis distance as the weighting function on each GLCM  
matrix obtained from a (new) image to produce only two features
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matrix obtained from a (new) image, to produce only two features,
one for the positive and one for the negative partition of ∆(i,j).

Sum and difference histogramsSum and difference histograms

• The sum histogram S is simply the histogram of the sums• The sum histogram S  is simply the histogram of the sums 
of pixels dx and dy  apart

• For example, the gray level at I(x,y) is added to the gray level at p , g y ( ,y) g y
I(x+dx,y+dy) and the histogram bin corresponding to that sum is 
incremented

• The difference histogram D is simply the histogram of the difference• The difference histogram D is simply the histogram of the difference 
of pixels dx and dy apart

• The number of possible values of sum and difference histogram is 2G-1
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• The number of possible values of sum and difference histogram is 2G 1.

Sum and difference histogramsSum and difference histograms

• GLCM features can be derived from Ps and PdGLCM features can be derived from Ps and Pd
• Example:

– Contrast from Pd

– Contrast from GLCM

• Some of the features mentioned earlier is derived from the 
histograms

S A– Sum Average, 
– Sum Entropy, 
– Difference Entropy, 
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– Inverse Difference moment, 

Fourier analysisFourier analysis
• The Fourier spectra give direction and frequency for periodic 

d 2or near periodic 2D patterns

• Local FFT in windows

T i h d i i di i ill h k i h• Texture with a dominating direction will have peaks in the 
spectra along a line orthogonal to the texture orientation

• High frequency  = fine texture = peaks in the spectra far from g qu y u p a p a a o
the origin 

• Thus it is possible to separate fine and coarse spectra  

• The spread in image frequencies = width of the peak in Fourier

• Isotropic textures with a defined frequency can be seen as rings 
in the spectrain the spectra

• Scalar features can be extracted by integration over rings, 
wedges or from results of Gabor filtering (next slide)
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Fourier analysis exampleFourier analysis example

T f t F i d i• Transform to Fourier domain, 
integrate over rings or wedges

Gabor filters 
combine estimate of 

orientation and 
ffrequency.

F2 29.08.16 INF 4300 53

Gray level run length statisticsGray level run length statistics
• The GLRLM method extracts higher-order statistical• The GLRLM method extracts higher-order statistical 

texture information from digital images. 
• A set of consecutive pixels with the same gray-levelA set of consecutive pixels with the same gray level, 

colinear in a given direction, constitute a gray-level run.
• The run length is the number of pixels in the run. g p
• Run length value is the number of occurrences of a run.
• The normalized GLRLM contains the run length valuesThe normalized GLRLM contains the run length values 

divided by the total number of runs in the image.
• A number of value- and position-dependent weightings.p p g g
• The adaptive approach has proven useful.
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Cooccurrence of Gray Level RunsCooccurrence of Gray Level Runs

• As an alternative to the GLCM and GLRLM methods we introduced the• As an alternative to the GLCM and GLRLM methods, we introduced the 
4D cooccurrence of gray-level run length matrix (CGLRLM) method. 

Th f di i l (4D) li d t i P(i j k l) b• The four-dimensional (4D) normalized matrix P(i, j, k, l) may be seen 
as a natural extension of the 2D gray-level run length matrix, 
containing the estimated probability of cooccurrence of two runs 
of (gray-level, run length) = (i, j) and (k, l). 

• One could specify any geometrical relationship between the two runs.One could specify any geometrical relationship between the two runs. 
However, the most fruitful relationship to capture aspects of the 
texture primitives is to consider neighboring runs.

• The 4D normalized cooccurrence probability matrix P(i, j, k, l) may be 
replaced by its associated 2D sum and difference run-length matrices, 

d d ti f t b t t d f th
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and adaptive features may be extracted from these.

Learning goals - textureLearning goals texture

Understand what texture is and the difference between• Understand what texture is, and the difference between 
first order and second order measures

Understand the GLCM matrix and be able to describe algorithm• Understand the GLCM matrix, and be able to describe algorithm

• Understand how we go from an image to a GLCM feature image
P i h i d d– Preprocessing, choosing d and , 
selecting some features that are not too correlated

• There is no optimal texture features• There is no optimal texture features, 
it depends on the problem

• A good tutorial on texture:• A good tutorial on texture: 
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
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