UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in: INF9425 Projects in Analog / Mixed Signal CMOS Construction

Day of exam: Thursday, June the 3rd, 2010.

Exam hours: 14:30 - 17:30.

This examination paper consists of 5 pages.

Appendices: None.

Permitted materials: Any written material and calculator.

Make sure that your copy of this examination paper is complete before answering.

Oppgave 1 (Problem 1 has a weight of 17 % out of the total exam.)

1 a) (weight 6 %)

Consider the Sample-and-Hold circuit above, with $C_{OX} = 1.92~{\rm fF/(\mu m)^2}$, $V_{tn} = 0.5~{\rm V}$, and $W/V = 2\mu m$ / 0.5 μ m, supply-voltages +/- 2.5 V and the input signal varying between - 0.5 V and 0.5 V Hva/The switch introduces a hold step. What is the minimum size of C_{hld} if the absolute value of the offset due to charge injection should be no larger than 5 mV?

1 b) (weight 6 %)

For the bandgap reference shown below, we have: V_{EB1-0} = 0.65 V, T = 300 K, I_1 = 100 μ A. ΔV_{EB} = 59 mV, J_1 / J_2 = 10 Find the values of R1, R_2 and R_3 .

1 c) (weight 5 %)

Based on problem 1 2), what is the valur of K? You may make relevant assumptions based on "Johns & Martin".

Problem 2 (Problem 2 has a weight of 21 % out of the total exam.)

2 a) (weight 6 %)

The following relationships are given for an SC-circuit with input voltage u_1 , output voltage u_2 and the capacitances C_1 and C_2 :

$$C_2u_2[nT] = C_2u_2[(n-1)T] - C_1u_1[(n-1)T]$$

The signal at the input is sampled with the help of an ideal NMOS switch at time, t = (n-1)T. The clock signal for this switch is low at T = nT. Use the z-transform and write a transfer function for the circuit, in the z-plane.

2 b) (weight 10 %)

Given a SC-implementation of the following transfer function:

$$H(z) = U_2(z) / U_1(z) = (-C_1/C_2)(1/z-1)$$

Draw schematics for an SC-implementation of H(z), as well as the similar RC-filter implementation.

2 c) (weight 5 %)

Consider the illustration below, providing a relation between dynamic range and oversampling rate for an oversampling data converter. Which order, N, (N is a natural number) of the converter is probably belonging to the illustration. Explain your answer.

Problem 3 (Problem 1 has a weight of 26 % out of the total exam.)

Depicted below is a charge-pump phase comparator as well as some typical related waveforms.

page 4

Consider the information from the combination of the schematics and the waveforms and explain what is going on in the charge-pump phase comparator.

3 b) (weight 8 %)

Assume that the loop have a time constant of 100 cycles, or 2 μs , and that the free-running frequency of the oscillator is 50 MHz. Let $K_{osc} = 2\pi \times 50$ Mrad/s and $I_{ch} = 10 \ \mu A$. $C_2 = 0$. A maximally flat group delay is desired. Design the components of the LP-filter.

3 c) (weight 8 %)

Consider another case, wher the time, $\Delta \varphi_{in}$, is 0.1 µs, $I_{ch} = 1$ µA and $C_2 = 0$. What is the maximum change in the voltage across the capacitor, C_1 , during $\Delta \varphi_{in}$, given that $C_1 = 2$ nF?

Problem 4 (Problem 4 has a weight of 26 % out of the total exam.)

4 a) (weight 10 %)

Below you find a description of a $\Delta\Sigma$ modulator. Show how you can develop an expression for P_e (quantization noise power) for this topology, based on the formula below, ond relevant assumptions from "Johns & Martin".

$$P_{e} = \int_{f_{0}}^{f_{0}} S_{e}^{2}(f) |N_{TF}(f)|^{2} df$$

4 b) (weight 8 %)

Show how you may develop an expression for SNR_{max} , based on a) and $P_s = (\Delta^2 2^{2N}) / 8$. Explain what normally happens to a SNR_{max} when the oversampling rate is doubled, in this case? Explain.

4 c) (weight 8 %)

Our mathematical expression for SNR_{max} for this oversampling converter does not provide an upper limit for the sampling rate ("OSR"). How would this be for a practical implementation in CMOS? Explain.

Problem 5 (weight 10 %)

For a given power budget, performance may drop when migrating to newer technologies. This can complicate analog design. Could you please explain?

In the previous problem a part of an oversampling converter was shown. Could you say something about oversampling converters and how they are affected by technology scaling, when compared to Nyquist converters?

Good luck!