Sampling switches, charge injection, Nyquist data converter fundamentals

Tuesday, February 8th, 9:15 – 11:35

Snorre Aunet (sa@ifi.uio.no)
Nanoelectronics group
Department of Informatics
University of Oslo

Last week – Tuesday, February 1st

11.1 General considerations
11.2 Supply-independent biasing
11.3 Temperature-independent References
 11.3.1 Negative TC-voltage
 11.3.2 Positive TC-voltage
 11.3.3 Bandgap reference
11.4 PTAT Current generation
11.5 Constant-Gm Biasing

12.2 Sampling Switches
12.3 Switched Capacitor amplifiers
Today, February the 8th

- 12.2 Sampling switches
- 12.2.1 MOSFETS as Switches
- 12.2.2 Speed considerations
- 12.2.3 Precision considerations
- 12.2.4 Charge injection cancellation
- 12.3 Switched-Capacitor Amplifiers
 - 12.3.1 Unity-Gain Sampler / buffer
 - 12.3.2 Noninverting amplifier
 - 12.3.3 Precision Multiply-by-Two Circuit
- 12.4 Switched-Capacitor Integrator
- 12.5 SC common-mode feedback
- Data converter fundamentals
 ("Maloberti"+++)

Track (/sample-) and Hold capabilities of a sampling circuit
12.2 in "Razavi"

Figure 12.10 Track and hold capabilities of a sampling circuit.
S/H signals (clk, V_{in}, V_{CH}, V_{out})

Track (/sample-) and Hold capabilities of a sampling circuit

1/2 (ch. 12.2 in "Razavi")

- CK goes high at $t = t_0$, $V_{in} = 0$ for $t \geq 0$. C_H initially has a voltage equal to V_{dd}.
- At $t = t_0$, M_1 operates in **saturation**, but falls into the **triode** region after some time, when $V_{out} = V_{dd} - V_{TH}$. Discharging continues until V_{out} approaches zero.
- Current when in **saturation**:
 \[I_{DS} = \frac{\mu C_{ox} W}{2L} (V_{DD} - V_{TH})^2 \]
Track (/sample-) and Hold capabilities of a sampling circuit

II/II (ch. 12.2 in "Razavi")

• CK goes high at $t = t_0$, when $V_{out} = 0$ V, and $V_{dd} = 3$ V.
• M_1's source is connected to C_H, and the transistor turns on with $V_{GS} = 3$ V, but $V_{DS} = 1$ V. Thus, $M1$ operates in the triode ("linear") region, charging C_H until V_{out} approaches 1 V.

A couple of observations regarding the MOS switch

(ch. 12.2 in "Razavi")

• We have seen that a MOS switch can conduct current in either direction simply by exchanging the role of the source and drain terminals.
• When the switch is on, V_{out} follows V_{in}.
• When the switch is off, V_{out} remains constant (Fig 12.10 b)).
(Ex. 12.2 in "Razavi") Vout as a function of time, for Fig. 12.9 (a)
(λ = 0)

\[V_{out}(t) = \frac{2 \cdot \lambda \cdot \lambda I_C}{\lambda \cdot \lambda I_C - 2} \]

Solution:

\[V_{out}(t) = V_{DD} - \frac{2 \cdot \lambda \cdot \lambda I_C}{\lambda \cdot \lambda I_C - 2} \]

Maximum output of NMOS S/H (ch. 12.2 in "Razavi", pp. 412)

- Assume \(V_{in} = V_{DD} \) (for the circuit from Fig. 12.9 b))
- \(V_{gs} = V_{dd}, \) initially : \(V_{DS} = V_{DD} \rightarrow V_{DS} \geq V_{GS} - V_{TH} : \) saturation
- \(T \) goes, \(V_{out} \rightarrow V_{DD} - V_{TH} \) (since the "overdrive" voltage vanishes and the current available for charging \(C_H \) go to negligible values)
- But: Given enough time, \(V_{out} \) will approach \(V_{DD} \) due to subthreshold currents conducted by the transistor.
- Serious limitation: If the input signal is close to \(V_{DD} \), the output provided by an NMOS switch cannot track the input (fast enough – remember subthreshold conduction).
- Similar problem with PMOS.
Ex. 12.3 \textbf{R}_{on} \text{ variation in sampling switch (ch. 12.2 in "Razavi")}

- Time for the output to settle within a given accuracy (ex. 0.1 \%) depends on the input voltage \((T = \text{R}_{on}\text{C}) \).

- MOS devices operating in deep triode region are sometimes called zero-offset switches to emphasize that they exhibit no dc shift between the input and output voltages.

- Nonexistent in bipolar technology, the zero offset property proves crucial in precise sampling of analog signals.

\begin{equation}
\Delta V
\end{equation}

Ex. 12.3 \textbf{Sampling speed considerations}

- \textbf{Speed}: Time from zero to maximum input level after the switch turns on, or more relevant: time to settle within a certain "error band", \(\Delta V \).

- Sampling speed is given by the on-resistance of the switch and the value of the sampling capacitor.

- \(R_{on} \) depends on input level, giving a greater time constant for more positive inputs (in the case of NMOS switches).
D/A (DAC) settling time and sampling rate

- In a DAC the **setting time** is defined as the time it takes for the converter to settle within some specified amount of the final value (usually 0.5 LSB).
- The **sampling rate** is the rate at which samples can be continuously converted and is typically the inverse of the settling time.

Ex. 12.3 Complimentary MOS switch

- NMOS on resistance increases as the input voltage becomes more positive (and vice versa)
- PMOS on-resistance has the opposite behaviour and decreases as the input voltage becomes more positive.
- Combine PMOS and NMOS for complementary switches and rail-to-rail swings (when needed).
Complementary switches need complementary clocks

- The complementary switch reveals much less variation in on-resistance than that corresponding to each switch alone.
- For high-speed input signals the PMOS and NMOS switches must turn off simultaneously. (If for example the NMOS turns off Δt seconds earlier than the PMOS, the output voltage tends to track the input for the remaining Δt seconds, giving rise to distortion in the sampled value.)

Fig. 12.18 shows a complementary clock generator for moderate precision.

A BiCMOS Sample-and-Hold for satellite communications

Source: Aasaar, Leif Helluma
**Department of Informatics, University of Oslo, Norway
**Norwegian Telecom Research, Kjeller, Norway

Summary

30 MHz is a commonly used intermediate frequency (IF) in satellite communication systems. Direct injection of this high frequency signal requires a very expensive ADC capable of operation at a clock rate near this frequency. However, a narrow-band 6-12 MHz can be filtered down to 6-4 MHz with a simple low-pass filtered at 11 MHz, thus undersampling allows conversion using a simple ADC with an accuracy of 0-8 bits. This ADC can be realized in CMOS with low area and power consumption.

This configuration has lower requirements on the sample-and-hold. Two features needing special attention are analog input bandwidth and aperture uncertainty (jitter). Other important specifications include minimal harmonic distortion (THD), signal-to-noise plus distortion ratio (SNDR), and undersampling distortion (IRD).

A BiCMOS sample-and-hold consists of an input MOSFET switch, a hold capacitor and an output-gain output buffer. The high-band input frequency makes this an inadequate solution. The ON-resistance of this switch varies with the input level, resulting in variations in timing and phase, hence distortion. Limited slew rate on the switch gate voltage combined with a high dV/dt for the input signal also introduce uncertainties.

BiCMOS offers the possibility of designing a practical sample-and-hold with good performance and a lower component count. A BiCMOS sample and hold circuit has been made with a special effort to overcome problems concerning the high analog input frequency. The input switch is implemented as a double-pulse gate controlled switch. In simple terms this switch works as an input/buffer hold mode with the buffer being held by a high input current and the input voltage being sampled simultaneously. The output buffer and the data hold line have been implemented with BiCMOS. A 1-bit current-sharing DAC switches between the sample and hold mode, turning current on and off in a saw-tooth-shaped waveform. With this configuration an input bandwidth of 8 MHz with a 3.5 pF load capacitor has been obtained. Input sampling rates are limited to 2.4 MHz. The current has been implemented in a 2 micron BiCMOS technology offered by Hammar. The active area is 0.03 mm2 and the circuit consumes approximately 20 mW.

- 2 µm BiCMOS, 1993
- "...A traditional CMOS Sample-and-Hold contains an input MOSFET switch, a hold capacitor and an unity-gain buffer. The high analog input frequency makes this an inadequate solution. The ON-resistance of the switch varies with the input level, resulting in variation in magnitude and phase, hence distortion. Limited slew rate on the switch gate voltage combined with a high dV/dt for the input signal also introduce aperture uncertainty (jitter)…" 8. februar 2011
Charge injection due to channel capacitance

- When the clock signal goes low, the charge is distributed equally between the drain and source of M1.
- is linearly related to V_{th}, resulting in a gain error for the S/H.

There is also a linear relationship to V_{th}, which is nonlinearly related to V_{in} (through V_{sb}) resulting in distortion for the overall S/H.
- Equal distribution (S/D) imprecise; worst-case: all charge to one node.

Charge injection leads to gain error, dc offsets and nonlinearity

- In reality the fraction of charge that exits through the source and drain terminals is a relatively complex function of various parameters such as impedance seen at each terminal to ground and the transition time of the clock. No good rule of thumb.
- Most circuit simulators model charge injection quite inaccurately.
- The assumed linear function of the input voltage, leading to gain error and dc offset (only) is imprecise, due to nonlinear behaviour of V_{th} upon V_{in}.

\[
Q_{\text{ch}} = WL C_{\text{int}} (V_{\text{dd}} - V_{\text{in}} - V_{\text{th}}).
\]

\[
\Delta V = \frac{WL C_{\text{int}} (V_{\text{dd}} - V_{\text{in}} - V_{\text{th}})}{2C_{G}}.
\]

\[
V_{\text{out}} = V_{\text{in}} - \frac{WL C_{\text{int}} (V_{\text{dd}} - V_{\text{in}} - V_{\text{th}})}{C_{G}}.
\]
Clock feedthrough

- Clock transitions are coupled through gate-drain and gate-source overlap capacitances.
- The error, ΔV, is independent of the input level, manifesting itself as a constant offset in the input/output characteristic.

\[
\Delta V = V_{CK} \frac{WC_{ov}}{WC_{ov} + C_H},
\]

kT/C noise

- A resistor charging a capacitor gives rise to a total rms noise voltage of SQRT (kT/C).
- The noise gets stored on the capacitor along with the instantaneous value of the input voltage.
- In order to achieve low noise the sampling capacitor must be sufficiently large, thus loading other circuits and degrading the speed.
Charge injection cancellation

Fig. 12.24: The deposited channel charge is absorbed by the latter.

Dimension \(W_2 = 0.5W_1 \) and \(L_1 = L_2 \). But: The approach is not very attractive as the underlying assumption of equal splitting between S and D is generally invalid.

- Fig. 12.26: Attempts to match dimensions leads to cancellation for only one input level.
- Better: **differential operation** (Fig. 12.27) Charge inj. Is common mode disturbance. Nonlinearity of body effect leads to odd order distortion.
- Charge injection limits the speed precision envelope in sampled-data systems.
Some systems exploiting data converters, "Allen & Holberg"

Different ADCs depending on needs

Which ADC Architecture Is Right for Your Application?

By Walt Kester (walt.kester@analog.com)
Main data converter types:

- Nyquist-rate converters:
 - Each value has a one-to-one correspondence with a single input
 - The sample-rate must be at least equal to twice the signal frequency (Typically somewhat higher)

- Oversampled converters:
 - The sample-rate is much higher than the signal frequency, typically 20 – 512 times.
 - The extra samples are used to increase the SNR
 - Often combined with noise shaping

Nyquist Sampling, Oversampling, Noise Shaping

- Figure from [Kest05]
- Straight over-sampling gives an SNR improvement of 3 dB / octave
- \(fs > 2f_0 \) \((2f_0 = \text{Nyquist Rate})\)
- \(\text{OSR} = \frac{f_s}{2f_0} \)
- \(\text{SNR}_{\text{max}} = 6.02N + 1.76 + 10\log(\text{OSR}) \)
Flash ADC from 1926 (Analog Digital Conversion handbook, Analog Devices)

The few documented flash converters are part of Paul M. Reaney's electrochemical PCM telegraphic systems described in a relatively opulent patent filed in 1921 (Reference 1—see further discussion in Chapter 1 of this book). In the ADC, a current proportional to the intensity of light drives a galvanometer which in turn moves a beam of light which activates one of 32 individual photocells, depending upon the amount of galvanometer deflection (see Figure 3.49). Each individual photocell output across part of a string network which produces the final binary code.

Figure 3.48: A 5-bit Flash ADC Proposed by Paul Reaney
Adapted from Paul M. Reaney, "Facsimile Telegraph System," U.S. Patent 1,808,527, Filed July 20, 1921, Issued November 30, 1926

Ideal D/A converter

\[B_{in} = b_1 2^{-1} + b_2 2^{-2} + \ldots + b_N 2^{-N} \]

\[V_{out} = V_{ref} (b_1 2^{-1} + b_2 2^{-2} + \ldots + b_N 2^{-N}) \]
Example: 8-bit D/A converter

An ideal D/A converter has

\[V_{\text{ref}} = 5 \text{ V} \]

Find \(V_{\text{out}} \) when

\[B_{\text{in}} = 10110100 \]

\[B_{\text{in}} = 2^{-1} + 2^{-3} + 2^{-4} + 2^{-6} = 0.703125 \]

\[V_{\text{out}} = V_{\text{ref}}B_{\text{in}} = 3.516 \text{ V} \]

Find \(V_{\text{LSB}} \)

\[V_{\text{LSB}} = 5/256 = 19.5 \text{ mV} \]

Ideal A/D converter (Fig. 11.3)

\[V_{\text{ref}}(b_12^{-1} + b_22^{-2} + \ldots + b_N2^{-N}) = V_{\text{in}} \pm V_x \]

where

\[-\frac{1}{2}V_{\text{LSB}} \leq V_x < \frac{1}{2}V_{\text{LSB}} \]
Ideal transfer curve for a 2-bit A/D converter (Fig. 2.2)

- A range of input values produce the same output value (Quantization error)
- Different from the D/A case

Quantization noise ("J&M" + "M")

\[V_Q = V_1 - V_{\text{in}} \]
Quantization noise model

• The model is exact as long as Vq is properly defined
• Vq is most often assumed to be white and uniformly distributed between +/- Vlsb/2

Quantization noise

• The rms-value of the quantization noise can be shown to be:
 \[V_{Q_{\text{rms}}} = \frac{V_{\text{LSB}}}{\sqrt{2}} \]
• Total noise power is independent of sampling frequency
• In the case of a sinusoidal input signal with p-p amplitude of \(V_{\text{ref}}/2 \):
 \[\text{SNR} = 20 \log \left(\frac{V_{\text{in_{rms}}}}{V_{Q_{\text{rms}}}} \right) = 20 \log \left(\frac{V_{\text{ref}}/\sqrt{2}}{V_{\text{LSB}}/\sqrt{2}} \right) \]
 \[\text{SNR} = 20 \log \left(\frac{V_{\text{ref}}}{V_{\text{LSB}}} \right) = 20 \log \left(\frac{2}{\sqrt{2}} \right) \]
 \[\text{SNR} = 6,02N + 1,76 \text{ dB} = \]
Quantization noise

- Signal-to-Noise ratio is highest for maximum input signal amplitude

Signed codes

- Unipolar / bipolar
- Common signed digital rep.: sign magnitude, 1’s complement, 2’s compl.
- 1’s compl.: Neg. Numbers are complement of all bits for equiv. Pos. Number: 5:0101, -5:1010
- Offset bin: 0000 to the most neg., and then counting up..
 +: closely related to unipolar through simple offset
2's complement

- $5_{10} : 0101 = 2^2 + 2^0$
- $-5_{10} : (0101)' +1 = 1010 + 1 = 1011$

- Addition of positive and negative numbers is straightforward, using addition, and requires little hardware
- 2's complement is most popular representation for signed numbers when arithmetic operations have to be performed

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Sign magnitude</th>
<th>2’s complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111</td>
<td>+7</td>
<td>+7</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
<td>+3</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
<td>+2</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>-0</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>-1</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>-3</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-5</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>-6</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>-7</td>
<td>-1</td>
</tr>
</tbody>
</table>

$7_{10} - 6_{10}$ via addition using two’s complement of -6

- $0000 0000 0000 0000 0000 0000 0000 0000 0111_2 = 7_{10}$
- $0000 0000 0000 0000 0000 0000 0000 0000 0110_2 = 6_{10}$
- Subtraction uses addition: The appropriate operand is negated before being added
- Negating a two’s complement number: Simply invert every 0 and 1 and add one to the result. Example:
 - $0000 0000 0000 0000 0000 0000 0000 0000 0110_2$ becomes $1111 1111 1111 1111 1111 1111 1111 1111 1010_2$
 - $1111 1111 1111 1111 1111 1111 1111 1111 1001_2 + 1_2$

 $= 1111 1111 1111 1111 1111 1111 1111 1111 1010_2$

- $0000 0000 0000 0000 0000 0000 0000 0000 0111_2 = 7_{10}$
- $+ 1111 1111 1111 1111 1111 1111 1111 1111 1010_2 = -6_{10}$

$= 0000 0000 0000 0000 0000 0000 0000 0000 0001_2 = 1_{10}$
Performance Limitations

- Resolution
- Offset and gain error
- Accuracy
- Integral nonlinearity (INL) error
- Differential nonlinearity (DNL) error
- Monotonicity
- Missing codes
- A/D conversion time and sampling rate
- D/A settling time and sampling rate
- Sampling time uncertainty
- Dynamic range

NB! Different meanings and definitions of performance parameters sometimes exist. Be sure what’s meant in a particular specification or scientific paper. There are also more than those mentioned here.

Resolution

- Resolution usually refers to the number of bits in the input (D/A) or output (ADC) word, and is often different from the accuracy.

Analog-Digital Conversion Handbook, Analog Devices, 3rd Edition, 1986: *An n-bit binary converter should be able to provide 2n distinct and different analog output values corresponding to the set of n binary words. A converter that satisfies this criterion is said to have a resolution of n bits.*

Table 1:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion rate</td>
<td>1000kHz</td>
</tr>
<tr>
<td>Full-scale input</td>
<td>±1V</td>
</tr>
<tr>
<td>Resolution</td>
<td>12b</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>75ppm</td>
</tr>
<tr>
<td>ENOB (100kHz)</td>
<td>7.58b</td>
</tr>
<tr>
<td>SNR (100kHz)</td>
<td>52.1dB</td>
</tr>
<tr>
<td>THD (100kHz)</td>
<td>0.006%</td>
</tr>
<tr>
<td>LSB (100kHz)</td>
<td>1.6mV</td>
</tr>
</tbody>
</table>

Figure 8: SFDR, ENOB, and SNR versus conversion rate. The input frequency and signal setting are 100kHz and 10mVpp, respectively.
Litterature

- Johns & Martin: "Analog Integrated Circuit Design"
- Franco Maloberti: "Data Converters"

Next week:

- Data converter fundamentals, among them some principles especially relevant for your project.
- Messages are given on the INF4420 homepage.
- Questions: sa@ifi.uio.no, 22852703 / 90013264
Transistor stuff.

- **Saturation**: $V_{gs} \geq V_{th}$, V_{ds} sufficiently high so that $V_{gd} < V_{th}$; $V_{ds} \geq (V_{gs} - V_{th})$

- **Triode**: $V_{gs} \geq V_{th}$, V_{ds} sufficiently high so $V_{gd} < V_{th}$

- **Cutoff / subthreshold**: $V_{gs} < V_{th}$