Data converter fundamentals

Tuesday, February 15th, 9:15-12:00

Snorre Aunet (sa@ifi.uio.no)
Nanoelectronics group
Department of Informatics
University of Oslo

Last time, February the 8th

- 12.2 Sampling switches
- 12.2.1 MOSFETS as Switches
- 12.2.2 Speed considerations
- 12.2.3 Precision considerations
- 12.2.4 Charge injection cancellation
- 12.3 Switched-Capacitor Amplifiers
- 12.3.1 Unity-Gain Sampler / buffer
- 12.3.2 Noninverting amplifier
- 12.3.3 Precision Multiply-by-Two Circuit
- 12.4 Switched-Capacitor Integrator
- 12.5 SC common-mode feedback
- Data converter fundamentals ("Maloberti"++)

14. februar 2011

Today, February the 15th

- 1.1 The ideal data converter
- 1.2 Sampling
- 1.2.1 Undersampling
- 1.2.2 Sampling-time jitter
- 1.3 Amplitude Quantization
- 1.3.1 Quantization noise
- 1.3.2 Properties of the
- Quantization Noise
- 1.4 kT/C Noise
- 1.5 Discrete and Fast Fourier
- Transform
- 1.5.1 Windowing
- 1.6 Coding Schemes
- 1.7 The D/A Converter
- 1.7.1 Ideal reconstruction
- 1.7.2 Real Reconstruction
- 1.8 The Z-transform
- (The contents refer to
- "Maloberti")

a)

Figure 1.1. Block diagram of the basic functions of an A / D (a) and a D/A (b) converter.

14. februar 2011

Data conversion (A/D and D/A) split into a series of steps

- A/D conversion steps: continoustime anti-aliasing filtering \rightarrow sampling \rightarrow quantization \rightarrow data coding.
- D/A conversion steps: transcoding \rightarrow sample-and-hold \rightarrow reconstruction filter

Sampling (chapter 1.2 in "Maloberti")

Figure 1.2. Continuous time signal (left) and its sampled data representation (right).

$$
\begin{equation*}
x^{*}(t)=x^{*}(n T)=\sum x(t) \delta(t-n T) \tag{1.1}
\end{equation*}
$$

- The output of the sampleris.c given by equation (1.1). The continous-time signal is transformed into it's sampleddata equivalent. Practical circuits generates pulses with finite duration and amplitudes representing the input only at exact sampling times, $n T$ (not only delta functions whose amplitude equals the input signal at the sampling times (See lecture notes 2011.02.08.)).
- Sampling a signal is equivalent to the mixing of the signal with a train of deltas.

[^0]
Sampling (chapter 1 in "Maloberti")

Figure 1.2. Continuous time signal (left) and its sampled data representation (right).

$$
\begin{equation*}
\mathcal{L}\left[\sum_{-\infty}^{\infty} \delta(t-n T)\right]=\sum_{-\infty}^{\infty} e^{-n s T} \tag{1.2}
\end{equation*}
$$

The use of (1.1), (1.2) and the Laplace transform definition results in

$$
\begin{equation*}
\mathcal{L}\left[x^{*}(n T)\right]=\sum_{-\infty}^{\infty}\left(X\left(s-j n \omega_{s}\right)=\sum_{-\infty}^{\infty} x(n T) e^{-n s T}\right. \tag{1.3}
\end{equation*}
$$

- The Laplace transfómeot an infinite sequence of deltas is given by eq. (1.2).
- Eq. (1.3) provides useful expressions for the Laplace transform of the sampled output. The right-hand equation will be used to discuss relationships between the s-plane and the zplane.

Sampling (chapter 1 in "Maloberti")

$$
\begin{equation*}
\mathcal{L}\left[\sum_{-\infty}^{\infty} \delta(t-n T)\right]=\sum_{-\infty}^{\infty} e^{-n s T} \tag{1.2}
\end{equation*}
$$

- Eq. (1.3) shows that the spiedelta of $x^{*}(n T)$ is the superposition of infinite replicas of the input spectrum. These replicas are centered at multiples of the sampling frequency being shifted along the f axis by $\mathrm{nf}_{\mathrm{s}}(=\mathrm{n} / \mathrm{T}), \mathrm{n}=$ $0, \pm 1, \pm 2, \ldots$, as a result, the spectrum being periodic with period f_{s}.
- Figure 1.4 a) shows the bilateral spectrum of a continous-time signal.
- Figure 1.4 b) shows the sampled spectrum using $f_{s} / 2>f_{B}$

Sampling and aliasing

Figure 1.4 a) shows the bilateral spectrum of a continous-time signal.

Figure 1.4 b) shows the sampled spectrum using $f_{s} / 2>f_{B}$

The sampling frequency must be at least twice the bandwidth of the input for the replicas not to overlap (also for noise and interferences, that can have components at "any" frequency). It is necessary to remove out of band interferences whose folding could corrupt the signal band. This is done by an anti-aliasing filter that passes the band of interest and rejects the out of band interferences.

Samplina-time Jitter (ch. 1.2.2)

Figure 1.11. Errors caused by sampling time jitter.

Figure 1.12. Clock jitter at different SNR and input frequencies.

- Variations in sampling time from the ideal
- Ex: 8-bit converter sampling a 250 MHz sinusoidal mus keep its sampling time uncertainty under 5 ps to maintain 8 -bit accuracy.

Consider the following input signal: $\quad V_{\text {in }}=\frac{V_{\text {ref }}}{2} \sin \left(2 \pi f_{\text {in }} t\right)$

If the variation in sampling time is Δt, following equation must be satisfied to keep $\Delta \mathrm{V}$ less than 1LSB

$$
\Delta \mathrm{t}<\frac{\mathrm{V}_{\mathrm{LSB}}}{\pi \mathrm{f}_{\mathrm{in}} \mathrm{~V}_{\text {ref }}}=\frac{1}{2^{\mathrm{N}} \pi \mathrm{f}_{\mathrm{in}}}
$$

kT / C noise (chapter 1.4 in "Maloberti")

Figure 1.18. Simple model of a sampler and its noise equivalent circuit.

Figure 1.19. $k T / C$ noise voltage versus the capacitance value. The staircase shows the quantization step for $1 V_{F S}$.
$v_{n, C_{s}}^{2}(\omega)=\frac{4 k T R_{s}}{1+\left(\omega R_{s} C_{s}\right)^{2}}$.
$P_{n, C_{s}}=\int_{0}^{\infty} v_{n, \text { out }}(f) d f=4 k T R_{s} \int_{0}^{\infty} \frac{d f}{1+\left(2 \pi f R_{s} C_{s}\right)^{2}}=\frac{k T}{C_{s}}$.

- Goes to zero only for infinite temperature. negligible with respect to the sampling time. white, $=4 \mathrm{kTR}_{\mathrm{s}}$. colored (Eq. 1.24).
1.25
- Unavoidable limit of data converters sampling capacitance or zero
- The sampling operates correctly if the time constant $T_{S}=R_{S} C_{S}$ is
- The bandwidth of the input signal must be much smaller than $1 / T_{S}$.
- The spectrum of the thermal noise is
- The $\mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{s}}$ network etsablishes a lowpass filtering that makes the noise spectrum accross the capacitor
- The noise power stored on C_{S} when the switch goes off is given by eq.

Coding schemes (ch. 1.6)

- USB - Unipolar Straight Binary: is the simplest binary scheme. It is used for unipolar signals. The $U S B$ represents the first quantization level,
$-V_{\text {ref }}+1 / 2 V_{L S B}$ with all zero's $(\cdots 0000)$. As the digital code increases, the analog input increases by one $L S B$ at a time, and when the digital code is at the full scale $(\cdots 1111)$ the analog input is above the last quantization level $V_{r e f}-1 / 2 V_{L S B}$. The quantization range is $-V_{\text {ref }} \cdots+V_{\text {ref }}$.
CSB - Complementary Straight Binary: the opposite of the USB. CSB coding is also used for unipolar systems. The digital code ($\cdots 0000$) represents the full scale while the code $(\cdots 1111)$ corresponds to the first quantization level.
BOB - Bipolar Offset Binary: is a scheme suitable for bipolar systems (where the quantized inputs can be positive and negative). The most significant bit denotes the sign of the input: 1 for positive signals and 0 for negative signals. Therefore, $(\cdots 0000)$ represents the full negative scale. The zero crossing occurs at $(01 \cdots 111)$ and the digital code $(1 \cdots 1111)$ gives the full positive scale.
COB - Complementary Offset Binary: this coding scheme is complementary to the $B O B$ scheme. All the bits are complemented and the meaning remains the same. Therefore, since $(01 \cdots 111)$ denotes the zero crossing in the $B O B$ scheme the zero crossing of $C O B$ is becomes $(10 \cdots 000)$.
BTC - Binary Two's Complement: is one of the most used coding schemes. The bit in the $M S B$ position indicates the sign in a complemented way: it is 0 for positive inputs and 1 for negative inputs. The zero crossing occurs at $(\cdots 0000)$. For positive signals the digital code increases normally for an increasing analog input. Thus, the positive full scale is $(0 \cdots 1111)$. For negative signals, the digital code is the two's complement of the positive counterpart. This leads $(1 \cdots 0000)$ to represent the negative full scale. The BTC coding system is suitable for microprocessor based systems or for the implementation of mathematical algorithms. It is also the standard for digital audio.
CTC - Complementary Two's Complement: is the complementary code of BTC. All the bits are complemented and codes have the same meaning. The negative full scale is $(0 \cdots 1111)$; the positive full scale is $(1 \cdots 0000)$.

The D/A converter (ch. 1.7)

b)

Figure 1.26. Signal waveform after the $S \& H$ of a $D A C$.
Ideally, reconstruction uses a filter with transfer function

$$
\begin{align*}
& H_{R, i d}(f)=1 \text { for }-\frac{f_{s}}{2}<f<\frac{f_{s}}{2} \\
& H_{R, i d}(f)=0 \text { otherwise. } \tag{1.37}
\end{align*}
$$

Unfortunately, the impulse response, $r(t)$, of the ideal reconstruction filter is

$$
\begin{equation*}
r(t)=\frac{\sin \left(\omega_{s} t / 2\right)}{\left(\omega_{s} t / 2\right)} \tag{1.38}
\end{equation*}
$$

- The transcoder generates a sequence of pulses whose amplitude is the analog representation of the digital code. Then, the reconstruction process changes the sequence of pulses into a continous-time signal, obtained by the cascade of a S/H and a filter. The reconstruction filter smoothes the staircase-like waveform by removing high frequency components to obtain the analog result.
- An ideal reconstruction filter is not obtainable

Real reconstruction filters

$H_{S \& H}(s)=\frac{1-e^{-s T}}{s \tau}$,
where τ is a suitable gain factor whose dimension is time for making $H_{S \& H}$ dimensionless.

Equation (1.39) on the $j \omega$ axis becomes

$$
\begin{equation*}
H_{S \& H}(j \omega)=j \frac{T}{\tau} e^{-j \omega T / 2} \frac{\sin (\omega T / 2)}{\omega T / 2} \tag{1.40}
\end{equation*}
$$

showing a phase shift proportional to ω and an amplitude attenuation proportional to the $\operatorname{sinc}(=\sin (x) / x)$ function.

- A real reconstruction filter is an approximation of the ideal reconstruction response, given by eq. 1.39.
- On the j ω axis equation 1.39 becomes as in eq. 1.40, showing a phase shift proportional to ω and an amplitude attenuation proportional to the sinc ($=$ $\sin (x) / x)$ function.
- Fig. 1.27 include the ideal reconstruction filter as well as the sinc function.

Figure 1.27. Amplitude response of the ideal and real sample-and-hold.

Main data converter types:

- Nyquist-rate converters:
- Each value has a one-to-one correspondencewith a single input
- The sample-rate must be at least equal to twice the signal frequency (Typically somewhat higher)
- Oversampled converters:
- The sample-rate is much higher than the signal frequency, typically 20-512 times.
- The extra samples are used to increase the SNR
- Often combined with noise shaping

(a)

(b)

Different ADCs depending on needs

Figure 1. ADC architectures, applications, resolution, and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right for Your Application?

By Walt Kester [walt.kester@analog.com]

IEEE 2005 CUSTOM INTEGRATED CIRCUITS CONFERENCE
Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS
Y. Chiu ${ }^{1}$, B. Nikolici ${ }^{2}$, and P. R. Gray ${ }^{2}$

Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Electrical Engineering and Computer Sciences, University of California at Berkeley

ADC operational environment and influence on performance

- Supply voltage (ex. 14 bit requires $600 \mathrm{ppm} / \mathrm{V}$)
- Temperature (ex. 14 bit requires $0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
- High-performance converters use separate pins for A and D supplies
- Connecting leads between supplies and pins should be short (noise, L).
- High frequency measurements need multi-layer PCB boards with separate ground and power planes.
- PCB traces leading clock signals must be short with a solid ground plane underneath.
- For low speed converters use a low output impedance generator so that internal fluctuations < 1 LSB are avoided.
- Manufacturers may provide evaluation boards, or their layout, as well as guidelines explaining evaluation procedures.
- PCB limits can totally mask the performance of a device

Converter specifications (chapter 2 in "Maloberti"

- General features: Many self-explanatory. Type of analog signais, resolution, dynamic range, absolute maximum ratings, ESD notice, pin function and pin configuration, warm-up time, drift.
- Static specifications: analog resolution, analog input range, offset, zero scale offset, common mode error, full scale error, bipolar zero offset, gain error, differential non-linearity error (DNL), monotonicity, hysteresis, missing code, integral non-linearity (INL), temperature range, thermal resistance, lead temperature, power dissipation
- Dynamic specifications: analog input bandwidth, input impedance, load regulation or output impedance, settling time, cross-talk, aperture uncertainty (jitter), D. to A. glitch impulse, glitch power, equivalent input referred noise, SNR, SINAD, SNDR, Dynamic range, Effective number of bits, harmonic distortion, spurious free dynamicrange, intermodulation distortion, two-tone Intermodulation distortion, multi-tone power ratio, noise power ratio, effective resolution bandwidth, Figure of Merit
- Digital and switching specifications:logic levels, encode or clock rate, clock timing, clock source, sleep mode

Static specifications (chapter 2 in "Maloberti")

- Static specifications:
analog resolution, analog input range, offset, zero scale offset, common mode error, full scale error, bipolar zero offset, gain error, differential nonlinearity error (DNL), monotonicity, hysteresis, missing code, integral nonlinearity (INL), temperature range, thermal resistance, lead temperature, power dissipation

Figure 2.2. Ideal input-output transfer function of an A/D converter.

Static specifications (chapter 2 in "Maloberti")

- Static specifications:
analog resolution, analog input range, offset, zero scale offset, common mode error, full scale error, bipolar zero offset, gain error, differential nonlinearity error (DNL), monotonicity, hysteresis, missing code, integral nonlinearity (INL), temperature range, thermal resistance, lead temperature, power dissipation

(a)
(b)

Figure 2.3. Input-output transfer characteristic of a real data converter.

(a)
(b)

Static specifications (chapter 2 in "Maloberti")

- Static

 specifications:analog resolution, analog input range, offset, zero scale offset, common mode error, full scale error, bipolar zero offset, gain error, differential nonlinearity error (DNL), monotonicity, hysteresis, missing code, integral nonlinearity (INL), temperature range, thermal resistance, lead temperature, power dissipation

Figure 2.5. Gain error for an analog-to-digital (a) and a digital-to-analog (b) converter.

Static specifications (chapter 2 in "Maloberti")

- Static

specifications:

analog resolution, analog input range, offset, zero scale offset, common mode error, full scale error, bipolar zero offset, gain error, differential nonlinearity error (DNL), monotonicity, hysteresis, missing code, integral nonlinearity (INL), temperature range, thermal resistance, lead temperature, power dissipation

Figure 2.6. Differential non-linearity error (DNL) of a possible 12-bit ADC.

$$
\begin{equation*}
D N L(k)=\frac{\Delta_{r}(k)-\Delta}{\Delta} . \tag{2.1}
\end{equation*}
$$

Data Converter Specifications

FEATURES

gle 1.8 V supply operatio SNR: 49.3 dBFS at 200 MHz input at 250 MSPS Low power: 314 mW at 250 MSPS
On-chip reference and track-and-hol 1.2 Vp -p analog input range for each channel Differential input with 500 MHz bandwidth
DNL: ± 0.2 LSB
Serial port control options
offset binary, Gray code, or twos complement data format
Optional clock duty cycle stabilizer
Built-in selectable digital test pattern generation
Pin-programmable power-down function
Available in 48-lead LFCSP
Available in 48 -lead LFCSP
APPLICATIONS
Communications
Diversity radio systems
I/Q demodulation systems
Battery-powered instruments
Handheld scope meters
Low cost digital oscillos
OTS: video over fiber

[^1]- Analog Devices: http://www.analog.com/en/i ndex.html
- Linear Technology: http://www.linear.com/prod ucts/data_conversion
- Cirrus Logic : http://www.cirrus.com/en/pr oducts/a-d converters.html
- Many other producers exist.

Ideal D/A converter

$$
\begin{gathered}
\mathrm{B}_{\text {in }}=\mathrm{b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-\mathrm{N}} \\
\mathrm{~V}_{\text {out }}=\mathrm{V}_{\text {ref }}\left(\mathrm{b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-\mathrm{N}}\right)
\end{gathered}
$$

Example : 8-bit D/A converter

An ideal D/A converter has

$$
\mathrm{V}_{\mathrm{ref}}=5 \mathrm{~V}
$$

Find Vout when

$$
\begin{aligned}
& \quad \mathrm{B}_{\text {in }}=10110100 \\
& \qquad \mathrm{~B}_{\text {in }}=2^{-1}+2^{-3}+2^{-4}+2^{-6}=0,703125 \\
& \mathrm{~V}_{\text {out }}=\mathrm{V}_{\text {re }} \mathrm{B}_{\text {in }}=3,516 \mathrm{~V} \\
& \text { Find } \\
& \qquad V_{\text {LSB }} \\
& \quad \mathrm{V}_{\text {LSB }}=5 / 256=19,5 \mathrm{mV}
\end{aligned}
$$

Ideal A/D converter (Fig. 11.3)

$$
\mathrm{V}_{\mathrm{ref}}\left(\mathrm{~b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-\mathrm{N}}\right)=\mathrm{V}_{\mathrm{in}} \pm \mathrm{V}_{\mathrm{x}}
$$

where

$$
-\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}} \leq \mathrm{V}_{\mathrm{x}}<\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}}
$$

Ideal transfer curve for a generic number of bits A/D converter (Fig. 2.2)

-A range of input values produce the same output value (QA range of input values produce the same output value (Quantization error)
-Different from the D/A case

Quantization noise ("J\&M" + "M")

Quantization errors occiorsccs even in ideal A/D converters.

These errors may be modelled as equivalent to an additive noise source.
$V_{1}=V_{\text {in }}+V_{Q}$
The above equation is exact because no approximations have been made. (The quantization noise modelling becomes aproximate once some assumptions are made about the statistical properties of V_{Q}.)

Quantization noise ("J\&M" + "M")

$$
V_{Q}=V_{1}-V_{\text {in }}
$$

A/D and D/A are both n-bit data converters

The ramp input from the D/A appears as a staircase. V_{Q} is limited to $+/-\mathrm{V}_{\mathrm{LSB}} / 2$ The average of V_{Q} is zero, which is not the case for the rms value of the noise signal.

Rms value for noise voltage:
$\mathrm{V}_{\mathrm{n}(\mathrm{ms})}=\left[(1 / \mathrm{T}) S_{0} \mathrm{~T}_{0} \mathrm{~V}_{\mathrm{n}}{ }_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}\right]^{1 / 2}$, where T is a suitable

$$
\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{1}-\mathrm{V}_{\mathrm{in}}
$$

Quantization noise model

Quantizer

$$
\mathrm{V}_{1}=\mathrm{V}_{\mathrm{in}}+\mathrm{V}_{\mathrm{Q}}
$$

Model
-TThe model is exact as long as Vq is properly defined
$\cdot \mathrm{Vq}$ is most often assumed to be white and uniformely distributed between +/VIsb/2

Quantization noise
V ref -

$$
\begin{aligned}
S N R & =20 \log \left(\frac{V_{\text {in }(\text { rus })}}{V_{a(\text { rms })}}\right) \\
& =20 \log \left(\frac{V_{\text {ref }} / 2 \sqrt{2}}{V_{L S B} / \sqrt{12}}\right)
\end{aligned}
$$

$0-$
assuming $V_{\text {in }}$ is a sinusoidal waveform between O and $V_{\text {ref }}$

$$
\lambda V_{\text {Hf }}=V_{L S B} \cdot 2^{N}
$$

$$
=20 \log \frac{\sqrt{3}}{\sqrt{2}}+2 \circ \log 2^{N} \begin{aligned}
& \log (a-b) \\
& =\log a+\log b
\end{aligned}
$$

1) rms amprituch
2) peck cumphitude 3) peak-to-peak amyl.

Peak-to-peah $=2 \sqrt{2} \times$ RMS RMS $=\frac{\text { peak-to-peah }}{2 \sqrt{2}}$

Quantiztion noise

$$
\begin{aligned}
& V_{n(r m s)}=\sqrt{\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} V_{Q} d t} \\
& V_{Q}=-\frac{L S B}{T} \cdot t \\
& \text { 介 } \\
& \left(y-y_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1} \sqrt{5}_{5}^{5}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { II } \\
& V_{Q(r m s)}=\sqrt{\frac{1}{t} \int_{-\frac{T}{2}}^{\frac{T}{L}} V_{L S B}^{2}\left(-\frac{t}{T}\right)^{2} d t} \\
& =\sqrt{\frac{V_{\text {LSB }}^{2}}{T^{3}}\left(\left.\frac{t^{3}}{3}\right|_{-\frac{T}{2}} ^{\frac{T}{2}}\right)} \\
& y-\frac{1}{2} V_{L S B}=\frac{-V_{L S B}}{T}\left(t+\frac{T}{2}\right) \\
& S_{B}^{R}=-\frac{V_{L S B}}{T} t-\frac{V_{\angle S B \cdot T}}{T 2} \\
& y-\frac{1}{2} K S B=-\frac{V_{L S B}}{T} t-\frac{V_{L S B \cdot T}}{T 2} \\
& y=-\frac{V_{L S B}}{T} \cdot t
\end{aligned}
$$

$$
\begin{aligned}
& =V_{L S B} / \sqrt{12} \\
& V_{Q_{\text {rms }}}=\frac{V_{L s B}}{\sqrt{12}}
\end{aligned}
$$

Quantization noise

-The rms-value of the quantization noise can be shown to be:

$$
\mathrm{V}_{\mathrm{Q}(\mathrm{rms})}=\frac{\mathrm{V}_{\mathrm{LSB}}}{\sqrt{12}}
$$

-Total noise power is independent of sampling frequency
-In the case of a sinusoidal input signal with p-p amplitude of $\quad \mathrm{V}_{\text {ref }} / 2$

$$
\begin{aligned}
& \mathrm{SNR}=20 \log \left(\frac{\mathrm{~V}_{\mathrm{in}(\mathrm{rms})}}{\mathrm{V}_{\mathrm{Q}(\mathrm{rms})}}\right)=20 \log \left(\frac{\mathrm{~V}_{\mathrm{ref}} /(2 \sqrt{2})}{\mathrm{V}_{\mathrm{LSB}} /(\sqrt{12})}\right) \\
& \mathrm{SNR}=6,02 \mathrm{~N}+1,76 \mathrm{~dB}
\end{aligned}
$$

Quantization noise

-Signal-to Noise ratio is highest for maximum input signal amplitude

Signed codes

- Unipolar / bipolar
- Common signed digitalepr sign magnitude, 1's complement, 2's compl.

Table 11.1	Some 4-bit signed digital representations				
	Normalized number	Sign magnitude	1's complement	Offset binary	2's complement
+7	$+7 / 8$	0111	0111	1111	0111
+6	$+6 / 8$	0110	0110	1110	0110
+5	$+5 / 8$	0101	0101	1101	0101
+4	$+4 / 8$	0100	0100	1100	0100
+3	$+3 / 8$	0011	0011	1011	0011
+2	$+2 / 8$	0010	0010	1010	0010
+1	$+1 / 8$	0001	0001	1001	0001
+0	+0	0000	0000	1000	0000
(-0)	(-0)	(1000)	(1111)		
-1	$-1 / 8$	1001	1110	0111	1111
-2	$-2 / 8$	1010	1101	0110	1110
-3	$-3 / 8$	1011	1100	0101	1101
-4	$-4 / 8$	1100	1011	0100	1100
-5	$-5 / 8$	1101	1010	0011	1011
-6	$-6 / 8$	1110	1001	0010	1010
-7	$-7 / 8$	1111	1000	0001	1001
-8	$-8 / 8$			0000	1000

- Sign. M.: 5:0101, -5:1101, two repr. Of 0, $2^{\mathrm{N}}-1$ numb.
- 1's compl.: Neg. Numbers are complement of all bits for equiv. Pos. Number: 5:0101, -5:1010
- Offset bin: 0000 to the most neg., and then counting up..
+: closely related to unipolar through simple offset

2's complement

A3a2a1a0	Sign magnitude	2s complement
0111	+7	+7
0110	+6	+6
0101	+5	+5
0100	+4	+4
0011	+3	+3
0010	+2	+2
0001	+1	+1
0000	+0	+0
1000	-0	-8
1001	-1	-7
1010	-2	-6
1011	-3	-5
1100	-4	-4
1101	-5	-3
1110	-6	-2
111	-7	-1

- $5_{10}: 0101=2^{2}+2^{0}$
- $-5_{10}:(0101)^{\prime}+1=1010+1=$ 1011
- Addition of positive and negative numbers is straightforward, using addition, and requires little hardware
- 2's complement is most popular representation for signed numbers when arithmetic operations have to be performed
$7_{10}-6_{10}$ via addition using two's complement of -6
- $0000000000000000000000000000000000111_{2}=7_{10}$
- $0000000000000000000000000000000000110_{2}=6_{10}$
- Subtraction uses addition: The appropriate operand is negated before being added
- Negating a two's complement number: Simply invert every 0 and 1 and add one to the result. Example:
- $000000000000000000000000000000000110_{2}$ becomes
- $111111111111111111111111111111111001_{2}$

$$
+
$$$1_{2}$

= $111111111111111111111111111111111010^{2}$ $000000000000000000000000000000000111_{2}=7_{10}$

+ $11111111111111111111111111111111{11010_{2}}^{2}=-6_{10}$
$=000000000000000000000000000000000001_{2}=1_{10}$

performance limitations

- Resolution
- Offset and gain error
- Accuracy
- Integral nonlinearity (INL) error
- Differential nonlinearity (DNL) error
- Monotonicity
- Missing codes
- A/D conversion time and sampling rate
- D/A settling time and sampling rate
- Sampling time uncertainty
- Dynamic range
- NB!! Different meanings and definitions of performance parameters sometimes exist. \rightarrow Be sure what's meant in a particular specification or scientific paper.. There are also more than those mentioned here.

Resolution

- Resolution usually refers to the number of bits in the input (D/A) or output (ADC) word, and is often different from the accuracy.
- Analog-Digital Conversion Handbook, Analog Devices, 3rd Edition, 1986: An n-bit binary converter should be able to provide $2 n$ distinct and different analog output values corresponding to the set of n binary words. A converter that satisfies this criterion is said to have a resolution of n bits.
in $0.18-\mu \mathrm{m}$ Digital CMOS

[^2]| TABLE I | |
| :---: | :---: |
| KEY DATA For the ADC | |

Fig. 8. SFDR, SNR, and SNDR versus conversion rate. The input frequency and signal swing is 10 MHz and $2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, respectively

Litterature

- Johns \& Martin: "Analog Integrated Circuit Design"
- Franco Maloberti: "Data Converters"

Next week, 22/2:

- More on Nyquist Data Converters
- Messages are given on the INF4420 homepage.
- Questions: sa@ifi.uio.no , 22852703 / 90013264

[^0]: Figure 1.3. Ideal sampler and its non-linear equivalent processing.

[^1]:

[^2]: Terje Nortvedt Andersen. Bjerrar Hernes, Member, IEEE, Atl Briskemyr, Frode Testor,
 Johnny Bjornsen, Member IEEE. Thomas E. Bonnenud, and ©ystein Moldsvor

