

Signed codes						 Unipolar / bipolar Common signed digital reprint sign magnitude, 1's complement, 2's compl.
Table 11.1	Some 4-bit s	igned digital n	epresentations			Sign M : 5:0101 5:1101
Number	Normalized number	Sign magnitude	1's complement	Offset binary	2's complement	• Sigii. W 5.0101, -5.1101,
+7	+7/8	0111	0111	1111	0111	two repr. Or 0, 2^{n-1} numb.
+6	+6/8	0110	0110	1110	0110	
+5	+5/8	0101	0101	1101	0101	 1's compl · Neg Numbers
+4	+4/8	0100	0100	1100	0100	· I S compl Ney. Numbers
+3	+3/8	0011	0011	1011	0011	
+2	+2/8	0010	0010	1010	0010	are complement of all bits
+1	+1/8	0001	0001	1001	0001	
+0	+0	0000	0000	1000	0000	for aquiv Dec Number:
(-0)	(-0)	(1000)	(1111)			IOI EQUIV. FUS. NUITIDEI.
-1	-1/8	1001	1110	0111	1110	
-2	-2/8	1010	1101	0110	110	5 0101 -5 1010
-3	-3/8	1011	1100	0101	1100	0.0101, 0.1010
-4	-4/8	1100	1011	0100	1011	
-5	-5/8	1101	1001	0010	1010	 Ottset bin: ()()() to the most.
-6	-6/8	1110	1000	0001	1001	
-7	-1/8	1111	1000	0000	1000	neal and then counting up
-8	-8/8			0000		a neg., and then counting up
						+: closely related to unipola through simple offset

7 ₁₀ -6 ₁₀ via addition using two's complement of -6
• 0000 0000 0000 0000 0000 0000 0000 0
• 0000 0000 0000 0000 0000 0000 0000 0
Subtraction uses addition: The appropriate operand is negated before being added
 Negating a two's complement number: Simply invert every 0 and 1 and add one to the result. Example:
 0000 0000 0000 0000 0000 0000 0000 0110₂ becomes
• 1111 1111 1111 1111 1111 1111 1111 1
+ 1 ₂
= 1111 1111 1111 1111 1111 1111 1111 1
0000 0000 0000 0000 0000 0000 0000 0111 ₂ = 7_{10}
+ 1111 1111 1111 1111 1111 1111 1111 1
$= 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_2 = 1_{10}$

performance limitations

- Resolution
- · Offset and gain error
- Accuracy
- · Integral nonlinearity (INL) error
- · Differential nonlinearity (DNL) error
- Monotonicity
- Missing codes
- A/D conversion time and sampling rate
- D/A settling time and sampling rate
- Sampling time uncertainty
- Dynamic range
- NB!! Different meanings and definitions of performance parameters sometimes exist. → Be sure what's meant in a particular specification or scientific paper.. There are also more than those mentioned here.

39

- Johns & Martin: "Analog Integrated Circuit Design"
- Franco Maloberti: "Data Converters"

