Nyquist Analog to Digital Converters
Tuesday, March 1st, 9:15-11:00

Snorre Aunet (sa@ifi.uio.no)
Nanoelectronics group
Department of Informatics University of Oslo

February the 22th

- 3.1 Introduction
- 3.1.1 DAC applications
- 3.1.2 Voltage and current references
- 3.2 Types of converters
- 3.3 Resistor based architectures
- 3.3.1 Resistive divider
- 3.3.2 X-Y selection
- 3.3.3 Settling of the output voltage
- 3.3.4 Segmented architectures
- 3.3.5 Effects of mismatch
- 3.3.6 Trimming and calibration
- 3.3.7 Digital Potentiometer
- 3.3.8 R-2R Resistor Ladder DAC
- 3.3.9 Deglitching

3.4 Capacitor based

architectures

3.4.1 Capacitive divider DAC
3.4.2 Capacitive MDAC

3.4.4 Hybrid capacitive resistive DACs
3.5 Current source based architectures

3.5.1 Basic operation
3.5.2 Unity current generator
3.5.3 Random mismatch with unary selection
3.5.4. Current sources selection
3.5.5 Current switching and
segmentation
3.5.6 Switching of current sources
3.6 Other architectures
(The contents refer to
"Maloberti")

March the 1st

- Contents of Chapter 4:
- 4.1 Introduction
- 4.2 Timing accuracy

- 4.3 Full flash converters

Figure 1.1. Block diagram of the basic functions of an $\mathrm{A} / \mathrm{D}(\mathrm{a})$ and a D / A (b) conventer.

- 4.4 Sub-ranging and two-step converters
- 4.5 Folding and interpolation
- 4.6 Time interleaved converters
- 4.7 Successive approximation converter
- 4.8 Pipeline converters
- 4.9 Other architectures

ADCs and throughput (1 of 2)

- Depending on the bandwidth of the input signal, ADCs may use one or multiple clock cycles per conversion.

Throughput Rate Comparison

ADCs and throughput (2 of 2)

- Depending on the bandwidth of the input signal, ADCs may use one or multiple clock cycles per conversion.

Fig. 1: Resolution vs. clock cycles/sample for different ADC algorithms

Successive approx ADC algorithm

Figure 4. Successive-approximation ADC algorithm using balance scale and binary weights.
Which ADC Architecture Is Right for Your Application?
By Walt Kester [walt.kester@analog.com]

- If we have weights of 1 kg, $2 \mathrm{~kg}, 4 \mathrm{~kg}, 8 \mathrm{~kg}, 16$ $\mathrm{kg}, 32 \mathrm{~kg}$ and will find the weight of an unknown X assumed to be 45 kg .
- 101101 ${ }_{2}$
$=1 * 32+0 * 16+1 * 8+1 * 4+$
0*2+1*1
$=45_{10}$

Successive approximation converter

- Multiple clock periods
- Exploits knowledge of previously determined bits to find next significant bit.
Low complexity and low power consumption
 For a given dynamic range 0 $-V_{F S}$ the MSB distinguishes between input signals below or above V_{FS} / 2. Comparing the input with $V_{F S} / 2$ obtains the first bit as seen in Fig. 4.28 a)

Fig. 4.29 shows a typical block diagram.

[^0]

Successive approximation converter

Figure 4.29. Basic circuit diagram of the successive approximation algorithm.

- Timing diagram: S/H samples the input during the 1 st clock period and holds it for N successive clock intervals.
- The DAC is controlled by the SAR algorithm (Fig. 4.28 b))
- Initially the SAR sets MSB to 1 as a prediction, though this may be changed to 0 .
- The process continues until all n bits have been determined.
- As the start of the next conversion (while the S\&H is sampling the next input, the SAR provides the n-bit output and resets the registers.
- The name of the algorithm comes from the fact that the voltage from the DAC is an improving approximation of the sampled input voltage.

Sub-ranging and Two-step converters

Figure 4.10. Block diagram of sub-ranging ($\mathrm{K}=1$) and two-step architectures ($\mathrm{K}>1$)

- Sub-ranging and two-step Aness have better speed-accuracy tradeoff than full flash for $\mathrm{n}>8$.
- 2 (or 3) clock periods per conversion, but smaller number of comparators and thus benefitting silicon area, power consumption and capacitive loading of the S / H.
- The DAC converts the M MSBs back to an analog signal that is subtracted from the held input that is converted to digital by the 2 nd N bit flash that yields the LSBs.
- Digital Logic combine coarse and fine bits to obtain the $\mathrm{n}=(\mathrm{M}+\mathrm{N})$ bit output.
- Subranging ADCs does not have the amplification by K (two-step has).

Sub-ranging and Two-step converterso

Figure 4.10. Block diagram of sub-ranging ($\mathrm{K}=1$) and two-step architectures ($\mathrm{K}>1$).

- Fig. 4.10 shows the timing ins diagram.
- Four logic signals (below main clock signal) are derived from the main clock.
- Assuming half a clock period is used to provide each function or group of functions means that 2 clock periods are enough for 1 conversion.
- For an 8 bit conversion: $\mathrm{M}=\mathrm{N}=4$ $\rightarrow 2(16-1)=30$ comparators are needed, instead of 255 for an 8 -bit flash ADC.
- The spared area and power are much more than what is needed for the DAC and residue generator.
- S/H is only loaded by 2^{M} comp.

Figure 4.18. Basic architecture of a folding converter

- Fig. 4.18 is a conceptual block diagram: The M-bit folder produces the analog folded output and the M-bit code which identifies which segment the output is in. The gain stage augments the dynamic range to become V_{FS}. The N -bit ADC determines the LSBs that are combined with the MSBs to give the overall output of $n=(N+M)$ bits.
- The folding circuit is normsally used for high conversion rates and medium-high resolutions.

Figure 4.19. (a) Real folding response and (b) its unfolded version.

- Sharp edges are desired, but hard to obtain.
- Linearity is good in the regions midway between the folding points and becomes bad as the input approaches the segment borders.
- This may give rise to an INL which sometimes can make the method impractical. There is a solution..

Interpolation in Flash ADCs
 (ch. 4.5.4)

Figure 4.22. a) Use of interpolation in flash comverterx. b) Outputs and interpolated response

- Reduces the number of preamplifiers by generating the median of adjacent pre-amplifier outputs. This interpolated voltage is then used by intermediate latches.
- Equal slopes at the zero crossing equalize the speed and the metastabilityu error of the latches.
- The number of pre-amps (and reference voltages diminish by a factor of 2, reducing the capacitive load on the S/H. (may be extended to 4 or 8 resistors between neighbouring pre-amplifiers.
- \rightarrow less power consumption or higher speed.

- Converters working in parallel for simultaneous quantization of input samples.
- A suitable combination of the results makes the operation equivalent to a single converter whose speed has been increased by a factor equal to the number of parallel elements.
- An alternative solution that relaxes the demanding specification associated with one full speed S/H employs one S/H in each path.
- Problems: gain mismatch between channels transformed into dynamic errors.

Time-Interleaved - best compromise betweien complexity and sampling rate - may be used for different architectures [Elbjornsson '05]

Figure 7 Comparivea betwect $A D C$ atclitectures. The time mbeteaved successive
aproximation $A D C$ gives the best conpromise between complexity and

Pipelined ADC -example

- $\mathrm{V}_{\mathrm{x}}(\mathrm{t})=\mathrm{V}_{\text {in }} \mathrm{t} / \mathrm{RC}\left(\mathrm{V}_{\mathrm{x}}\right.$ ramp derivative depending on $\left.\mathrm{V}_{\text {in }}\right)$
- High linearity and low offset/gain error
- Small amount of circuitry
- Low conversion speed
- $2^{\mathrm{N}+1}$ * $1 / \mathrm{T}_{\text {clk }}$ (Worst case)

- The digital output is given by the count at the end of T_{2}
- The digital output value is independent of the time-constant RC


```
\[
\begin{aligned}
& \text { Input offset voltage: voltage } \\
& \text { required to dive the }
\end{aligned}
\]
output voltage to zero
```


COMPARATOR OFFSET

Example: 8-bit FLASH, 1V FS, 99.9% yodel:
$V_{L S B}=\frac{1 V}{2^{8}}=3.90625 \mathrm{mV}$
$\frac{1}{2} v_{L S B}=0.001953125 \mathrm{~V}=1.953125 \mathrm{mV}$

To ensure 99.9% yield, the
corresponding sigma with a normal
distribution of errors is $\sigma=3.3$
$\frac{1}{2} L S B: 3.3>1.953125 \mathrm{nV} / 5.3=0.592 \mathrm{mV}$
The offset is mainly caused by the preamplifier of the comparator. \Rightarrow Design the 1st stage and optimize the layout for minimum threshold, tran scond. param. plod and W / L mismatches in the input diff. pair and active loads $\Delta V_{t h}=\frac{A_{V i}}{\sqrt{W L}}$.

Approximate Evaluation of max frequency of operation for ADCs (1) (2)

- $f_{\text {Tech }}$: Technology unity gain frequency
- f_{T} : unity gain frequency of OTA or op-amp
- $f_{T}=f_{\text {Tech }} / \alpha$, where α is at least 2-4 (ultimately depending on accuracy).
- $f_{C K}=f_{T} / \gamma$, where γ is a suitable margin between the op-amps f_{T} and the clock frequency, f_{CK}, as some time for settling is needed. $\left(f_{C K}<f_{T}\right)$
- In order to estimate γ, suppose that the input $\mathrm{V}_{\text {in }}$ is a step at $\mathrm{t}=0$.
- A single pole band-limitation gives rise to an output $\mathrm{V}_{\text {out }}(\mathrm{t})$ (approaching $V_{\text {in }}$) given by:
$V_{\text {out }}(t)=V_{\text {in }}\left(1-e^{-t / \tau}\right)$
(4.1)

- $\mathrm{A}_{\mathrm{OL}}=\mathrm{V}_{\text {out }} /\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$

The exponential function $y=e^{x}$

Approximate Evaluation of max fr - $f_{\text {Tech }}$: Technology unity gain frequency
 - f_{T} : unity gain frequency of OTA or op-amp

- $f_{T}=f_{\text {Tech }} / \alpha$, where α is at least 2-4 (ultimately depending on accuracy).
- Since an n-bit ADC needs an accuracy better than $2-(n+1)$, the settling time must be
$t_{\text {sett }}>\tau \cdot(n+1) \ln (2)$
- $f_{C K}=f_{T} / Y$, where γ is a suitable margin between the op-amps f_{T} and the clock frequency, $f_{C K}$, as some time for settling is needed. ($\mathrm{f}_{\mathrm{CK}}<\mathrm{f}_{\mathrm{T}}$)
- In order to estimate γ, suppose that the input $V_{\text {in }}$ is a step at $t=0$.
- A single pole band-limitation gives rise to an output $\mathrm{V}_{\text {out }}(\mathrm{t})$ (approaching $\mathrm{V}_{\text {in }}$) given by:
$V_{\text {out }}(t)=V_{\text {in }}\left(1-e^{-t / \tau}\right)$
$\tau=\frac{1}{2 \pi \beta f_{T}}$

$$
\begin{gather*}
f_{C K}<\frac{\pi \beta f_{T}}{(n+1) \ln (2)} \tag{4.3}\\
\gamma=\frac{f_{T}}{f_{C K}}>\frac{(n+1) \ln (2)}{\pi \beta} .
\end{gather*}
$$

- Since the time allowed for settling is half clock frequency.

The foreseen order of the anti-aliasing filter sets a given margin λ, which is the ratio between sampling retc and signal band Moreover since the conversion algorithm can use multiple clock periods (say k). the conversion rate is therefore given by $f_{C K} /(\lambda k)$.
β - feedback factor - how much of the output is fed back to the negative input

Litterature

- Johns \& Martin: "Analog Integrated Circuit Design"
- Franco Maloberti: "Data Converters"
- http://inst.eecs.berkeley.edu/~ee247/fa04/fa04/lectures/L19_f04.pdf

SyStem architecture and key components for an 8 bit/ gh
GaAs MESFET ADC
J. Saucrer, R. Hagelaver. F. Ochler. G. Rohmer, U. Schlag. D. Seitzer + T. Grave. W. Kellher ++

Which ADC Architecture Is Right for Your Application?

By Walt Kester [walt.kester@analog.com]

Next week, 01/03:

- Next week: To be defined.
- Messages are given on the INF4420 homepage.
- Questions: sa@ifi.uio.no , 22852703 / 90013264

[^0]: Figure 4.29. Basic circuit diagram of the successive approximation algonthm.

