

Februa	ary the 22th
 3.1 Introduction 3.1.1 DAC applications 3.1.2 Voltage and current references 3.2 Types of converters 3.3 Resistor based architectures 3.3.1 Resistive divider 3.3.2 X-Y selection 3.3.3 Settling of the output voltage 3.3.4 Segmented architectures 3.3.5 Effects of mismatch 3.3.6 Trimming and calibration 3.3.7 Digital Potentiometer 3.3.8 R-2R Resistor Ladder DAC 3.3.9 Deglitching 	 3.4 Capacitor based architectures 3.4.1 Capacitive divider DAC 3.4.2 Capacitive MDAC 3.4.3 "Flip around" MDAC 3.4.4 Hybrid capacitive resistive DACs 3.5 Current source based architectures 3.5.1 Basic operation 3.5.2 Unity current generator 3.5.3 Random mismatch with unary selection 3.5.4. Current sources selection 3.5.5 Current switching and segmentation 3.5.6 Switching of current sources 3.6 Other architectures (The contents refer to "Maloberti")
	1. mars 2011 2

• \rightarrow less power consumption or higher speed.

SITAS OSIO COMPARATOR OFFSET 8- bit FLASH, 1V FS, 99.9% yield: Example : $V_{LSB} = \frac{10}{2^8} = 3.90625 \text{ mV}$ 1 VLSB = 0,001953125 V = 1.953125 mV To ensure 99.9% yield the corresponding sigma with a normal distribution of errors is 5=3.7 2 12 LSB : 3.3 2: 1.953125 WV 5.3 = 0.592 WV 99.6% The offset is mainly caused by the pre-amplifier of the comparator => Design the 1st stage and optimize the layout for minimum threshold, transcord. param. plox and W/L mismatches in the input deft. pair and active loads $\Delta V_{th} = \frac{Avr}{V_{th}}$.

