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Introduction 

• More practical to do processing on sampled 
signals in many cases 

• Sampled + quantized signals = digital 

• Inputs and outputs are not sampled 

• How does sampling affect the signals? 

• Tools for analyzing sampled signals and systems 
(“discrete Laplace transform”, the z-transform) 
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Introduction 

• We have already seen sample and hold circuits 

• We can also realize integrators, filters, etc. as 
sampled analog systems—switched capacitor 
techniques. Discrete time, continuous amplitude. 

• Digital processing is efficient and robust, usually 
preferred where applicable. Sampling also 
applies to digital. 
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Introduction 
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Introduction 

• Sample a continuous time input signal at 
uniformely spaced time points. 

• Output is a discrete sequence of values (in 
theory). 
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Introduction 
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Sampling 
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Laplace transform: 

 

 

 

Fourier transform:  

 

Input signal 
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Sampling 
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Sampling 

Impulse sampling 

• Choose 𝜏 infinitely narrow 

• Choose the gain 𝑘 =
1

𝜏
. 

 

→ The area of the pulse at 𝑛𝑇 is equal to the 
instantaneous value of the input at 𝑛𝑇, 𝑓(𝑛𝑇). 
 

The signal is still defined for all time, so we can use 
the Laplace transform for analysis. 
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Sampling 

• Modelling the sampled output, 𝑓∗ 𝑡  

• We will model the sampled output in the time 
domain 

• Then find an equivalent representation in the 
Laplace domain 

• We will model each pulse independently and the 
whole signal by summing all pulses 
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Sampling 

Modeling a single pulse using step functions 
 

Step function:  
 

𝑢 𝑡 ≡  
1, 𝑡 ≥ 0

0, 𝑡 < 0
 

 

Single pulse: 
 

𝑓 𝑛𝑇 ⋅ 𝑢 𝑡 − 𝑛𝑇 − 𝑢 𝑡 − 𝑛𝑇 − 𝜏  
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Sampling 

 

Sum all the pulses to get the sampled signal: 

 

𝑓∗ 𝑡 = 𝑘 𝑓 𝑛𝑇 ⋅ 𝑢 𝑡 − 𝑛𝑇 − 𝑢 𝑡 − 𝑛𝑇 − 𝜏

∞

𝑛=0
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Sampling 

Transforming the time domain model to the 
Laplace domain 

 

Relevant Laplace transforms 
 

𝑓(𝑡) ↔ 𝐹(𝑠)

𝑢(𝑡) ↔ 𝑠−1

𝑓 𝑡 − 𝑎 𝑢 𝑡 − 𝑎 , 𝑎 ≥ 0 ↔ 𝑒−𝑎𝑠𝐹(𝑠)
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Sampling 

Time domain model from before 

𝑓∗ 𝑡 = 𝑘 𝑓 𝑛𝑇 ⋅ 𝑢 𝑡 − 𝑛𝑇 − 𝑢 𝑡 − 𝑛𝑇 − 𝜏

∞

𝑛=0

 

 

Laplace domain 

𝐹∗ 𝑠 = 𝑘 𝑓 𝑛𝑇
𝑒−𝑠𝑛𝑇

𝑠
−
𝑒−𝑠 𝑛𝑇+𝜏

𝑠

∞

𝑛=0

 

=
𝑘 1 − 𝑒−𝑠𝜏

𝑠
 𝑓 𝑛𝑇 𝑒−𝑠𝑛𝑇
∞

𝑛=0
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Sampling and the 𝒛-transform 

𝐹∗ 𝑠 =
𝑘 1 − 𝑒−𝑠𝜏

𝑠
 𝑓 𝑛𝑇 𝑒−𝑠𝑛𝑇
∞

𝑛=0

 

 

Impulse sampling: 𝑘 =
1

𝜏
, 𝜏 → 0 (𝑒𝑥 ≈ 1 + 𝑥) 

 

𝐹∗ 𝑠 ≈  𝑓 𝑛𝑇 ⋅ 𝑒−𝑠𝑛𝑇
∞

𝑛=0

≡  𝑓 𝑛𝑇 ⋅ 𝑧−𝑛
∞

𝑛=0
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The 𝒛-transform 

 
𝑧 ≡ 𝑒𝑠𝑇 

 

𝑋 𝑧 ≡  𝑥 𝑛𝑇 ⋅ 𝑧−𝑛
∞

𝑛=0

=  𝑥 𝑛 ⋅ 𝑧−𝑛
∞

𝑛=0

 

 

• Delay by 𝑘 samples, 𝑧−𝑘 ⋅ 𝑋(𝑧) 

• Convolution in time ↔ multiplication in 𝑧 
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Frequency response 

• Use the Laplace domain description of the 
sampled signal 

• As before, substitute 𝑠 = 𝑗𝜔 

𝑋 𝑗𝜔 =  𝑥 𝑛𝑇 ⋅ 𝑒−𝑗𝜔𝑛𝑇
∞

𝑛=−∞

 

• 𝑋(𝑗𝜔) is the Fourier transform of the impulse 
sampled input signal, 𝑥(𝑡). 

• 𝑒𝑗𝑥 is cyclic, 𝑒𝑗𝑥 = cos 𝑥 + 𝑗 sin 𝑥 
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Frequency response 

• We go from the 𝑧-transform to the frequency 
response by substituting 𝑧 = 𝑒𝑗𝜔𝑇  

• As we sweep 𝜔 we trace out the unit circle 
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Frequency response 

Rewriting to use frequency (Hz), rather than radian 
frequency 
 

𝑋 𝑓 =  𝑥 𝑛𝑇 ⋅ 𝑒−𝑗2𝜋𝑓𝑛𝑇
∞

𝑛=−∞

 

 

Because 𝑒𝑗𝑥 is cyclic, 𝑓1 = 𝑘 ⋅ 𝑓𝑠 + 𝑓1, where 𝑓1 is 
an arbitrary frequency, 𝑘 is any integer and 𝑓𝑠 is the 
sampling frequency (𝑇−1). 
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Frequency response 

The frequency spectrum repeats. We can only 

uniquely represent frequencies from DC to 
𝑓𝑠

2
 (the 

Nyquist frequency). 

 

Important practical consequence: We must band 
limit the signal before sampling to avoid aliasing. A 
non-linear distortion. 
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Frequency response 
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Frequency response 

If the signal contains frequencies beyond 
𝑓𝑠

2
, 

sampling results in in aliasing. Images of the signal 
interfere. 
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Sampling rate conversion 

• Changing the sampling rate after sampling 

• We come back to this when discussing 
oversampled converters 

• Oversampling = sampling faster than the Nyquist 
frequency would indicate 

• Upsampling is increasing the sampling rate 
(number of samples per unit of time) 

• Downsampling is decreasing the sampling rate 
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Downsampling 

Keep every n-th sample.  

Downsample too much: Aliasing 
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Upsampling 

Insert n zero valued samples between each original 
sample, and low-pass filter. Requires gain to 
maintain the signal level. 
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Discrete time filters 

Analog filters use integrators, 𝑠−1, as building 
blocks to implement filter functions. Discrete time 
filters use delay, 𝑧−1. 
 

Example:  

Time domain: 𝑦 𝑛 + 1 = 𝑏𝑥 𝑛 + 𝑎𝑦[𝑛] 

z-domain: 𝑧𝑌 𝑧 = 𝑏𝑋 𝑧 + 𝑎𝑌(𝑧) 
 

𝐻 𝑧 ≡
𝑌 𝑧

𝑋 𝑧
=
𝑏

𝑧 − 𝑎
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Discrete time filters 

Frequency response, 𝑧 = 𝑒𝑗𝜔 (𝜔 normalized to the 
sampling frequency, really 𝑧 = 𝑒𝑗𝜔𝑇) 
 

𝐻 𝑒𝑗𝜔 =
𝑏

𝑒𝑗𝜔 − 𝑎
 

 

DC is 𝑧 = 𝑒𝑗0 = 1. 

The sampling frequency is 𝑧 = 𝑒𝑗2𝜋 = 1 (also). 

Sufficient to evaluate the frequency response from 
0 to π due to symmetry (for real signals). 
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Stability 

𝑦 𝑛 + 1 = 𝑏𝑥 𝑛 + 𝑎𝑦[𝑛] 
 

If 𝑎 > 1, the output grows without bounds. Not 
stable. 

𝐻 𝑧 =
𝑏

𝑧 − 𝑎
 

 

In a stable system, all poles are inside the unit circle 

• 𝑎 = 1: Discrete time integrator 

• 𝑎 = −1: Oscillator 
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IIR filters 

𝑦 𝑛 + 1 = 𝑏𝑥 𝑛 + 𝑎𝑦[𝑛] is an infinite impulse 
response filter.  

 

Single impulse input (𝑥 0 = 1, 0 otherwise) results 
in an output that decays towards zero, but (in 
theory) never reaches zero. If we try to characterize 
the filter by its impulse response, we need an 
infinite number of outputs to characterize it. 
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FIR filters 

𝑦 𝑛 =
1

3
𝑥 𝑛 + 𝑥 𝑛 − 1 + 𝑥 𝑛 − 2  

 

Is a FIR (finite impulse response filter). 
 

𝐻 𝑧 =
1

3
 𝑧−𝑖
2

𝑖=0

 

 

FIR filters are inherently stable but require higher 
order (more delay elements) than IIR. 
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Bilinear transform 

• Mapping between continuous and discrete time 

• Design the filter as a continuous time transfer 
function and map it to the z-domain 

𝑠 =
𝑧−1

𝑧+1
, conversely, 𝑧 =

1+𝑠

1−𝑠
 

• 𝑠 = 0 maps to 𝑧 = 1 (DC) 

• 𝑠 = ∞ maps to 𝑧 = −1 
𝑓𝑠

2
 

• First order approximation 
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Sample and hold 

We modeled impulse 
sampling by letting 
𝜏 → 0. 
 

For the sample and 
hold, we use the same 
model, but let 𝜏 → 𝑇. 
 

Use this to find the 
transfer function of SH 
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Sample and hold 

𝐹∗(𝑠) =
𝑘 1 − 𝑒−𝑠𝜏

𝑠
 𝑓 𝑛𝑇 𝑒−𝑠𝑛𝑇
∞

𝑛=0

 

 

 

Sample and hold: 
 

𝐹∗(𝑠) =
𝑘 1 − 𝑒−𝑠𝑇

𝑠
 𝑓 𝑛𝑇 𝑒−𝑠𝑛𝑇
∞

𝑛=0
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Impulse sampling ≈ 1 

The pulse lasts for the full 
sampling period, 𝑇 
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Sample and hold 

The sample and hold shapes spectrum 
 

𝐻𝑆𝐻 𝑠 ≡
1 − 𝑒−𝑠𝑇

𝑠
 

 

Frequency (magnitude) response of the SH 
 

𝐻𝑆𝐻 𝑗𝜔 = 𝑇

sin𝜔𝑇
2
𝜔𝑇
2
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Sample and hold 
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Sample and hold sinc 

response, 
sin 𝑥

𝑥
 

Sampled signal spectrum 
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