GRS

«;N UNIVERSITETET

g 510SLO

More concurrency control

Jon Grov and Ragnar Normann

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann

Exercises from last week - 1

+ Exercise 1: Consider the schedule
S =r,(x) ry(x) w,(X) 1,(y) r,(y) w,(y) ¢, c,
As usual, the initial and final transactions are implicit
The Reads-From relation, RF(s) =

{(to! X, t1)1 (tO’ X, tg)’ (toi VZ t1)7 (to1 Y, tz)’ (t17 X, tco) (tz’ Y, tm)}
Explain why s is not view serializable
+ Answer: Both t and t,read x and y from ¢,

Since both transactions write an object read by the other, the
Read-From relation for any serial plan schedule must contain
ether (t, x, t)or (t, y, t)

It follows that s cannot be view serializable

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann

Last week’s exercises — 2

» Exercise 2: Show that the following history is final state
serializable but not view serializable

S =r,(x) Wy(X) r,(x) 1,(y) ,(y) w,(y) ¢, c,
Answer (final state serializability):
HIsI(x) = Hy(w,(x)) = f,(H,(ry(x))) = L (Hy(Wy(X))) = F(fo()
HIsl(y) = Hy(wa(y)) = fo(H(ry(x)). Hy(r2(¥)))

= Fo(Hy(Wy(x), Hy(Wo(Y))) = F,, (o). F5,0))
Put s”=1t, = r,(x) w,(x) r,(y) w,y) c,r,(x) r,(y) c,
HIs'1(x) = Hy(w,(x)) = [,(Hy(ry(x))) = fu(foul)
HIS'I(y) =Hy(w,(y)) = £, (H(ry(x)), Ho(ra(¥) = £5,(f0().15,0)
This shows that s and s’ final state equivalent

Last week’s exercises — 3

» Exercise 2 continued: Show that the following history is final
state serializable but not view serializable

S = 1,00 w,(x) 1, r,(y) r,(y) w,(y) ¢, c,
Answer (view serializability):
RF(s) ={ (to, x,t,) (t, x,t) (ta Yt/ (L y, 1) (LX) (LY, L)
Put s =t,t, = r,(x) r,(y) c; ry(x) w,(x) r,(y) w,(y) c,
RF(S,9 = { (tOert1)’ (t ,y,t1): (tO,X,l‘Q)’ (t :yftz)’ (tz’X:too)’ (tZ’y’too)}
Put s”=1,t, = r,(x) w,(x) r,(y) w,(y) c,r,(x) r,(y) c,
RF(s”) ={ (ty x.t (toy,t) (Lxt) (Ly,t) (B x.t) (Ly L)
This shows that s is neither view equivalent to s’ nor to s”

Introduction for today

» We are still working on the optimal scheduler.
e So far, we saw:

— Final-state serializability is the “outer bound” - if we allow all final
state-serializable schedules, we achieve maximum concurrency.

— But we do not care about maximum concurrency, we care about
maximum performance!

— We saw view-serializability, which is easier to test than final-state,
but still too expensive to use in a real scheduler.

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 5

Conflict-based scheduling

* Remember: A schedule s is serializable if it is equal to some
serial schedule s'.

» So far, both equivalence-criterions have had the undesirable
property that to determine this for an arbitrary schedule s is NP-
complete.

* Today, we shall introduce conflict equivalence and conflict
Serializability.

* We shall see that to test whether a given schedule is conflict
serializable can be done in polynomial time.

* Thus, we have drawn an important border: The best scheduling-
algorithm providing conflict serializability is the best, general
serializable scheduling-algorithm — there should be no need to
look further.

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 6

Conflict equivalence

» Two operations in a schedule are in conflict if they
— belong to different transactions
— access the same data object
— at least one of them is a write operation
» The definition of a schedule states that two conflicting operations
in a schedule smust be ordered in <_
+ Definition:
Two schedules s and s’ are conflict equivalent if
— op(s) = op(s))
— all pairs of conflicting operations in op(s) appear in the same
orderin < and <,

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 7

Conflict serializability
* Definition:
A schedule is conflict serializable if it is conflict equivalent to a
serial schedule

« Example: Consider the schedule
S =r,(x) w,(X) r(x) r,(y) r,(y) w,(y) ¢, c,
The set of conflicts in sis: { (w,(x), r,(x)), (r,(y), w,(y)) }
We have w,(x) <, r,(x) and r,(y) <, w,(y).

In both conflicts the conflicting operation of ¢, precedes the
conflicting operation of t,

Hence s is conflict equivalent to the serial schedule
S"=1r,(%) W (X) 1,(y) €, r,(X) r,(y) wy(y) C,
proving s to be conflict serializable

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 8

Conflict vs view serializability

* Theorem:
Every conflict serializable schedule is view serializable

Proof: Let s be a schedule which is conflict equivalent to the

serial schedule s’

Assume for contradiction that RF(s) # RF(s’)

Let (t,x,t) be in RF(s) but not in RF(s), i.e.

r(x) reads from w,(x) in s but from some other w,(x) in s

Since s and s’ are conflict equivalent we have
Wi(X) < ri(x) Ow,(x) <.r(x) Dw,(x) <.r(x) Ow,(X) <.r(x)

J

But w,(x) and w,(x) are also in conflict, and we see that we must

have w,(x) <,w,(x) Ow,(x) <, w,(x), a contradiction
Thus RF(s) = RF(s’) which shows s to be view serializable
QED

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann

Conflict graphs
(Serialization graphs)

« The conflict (or serialization) graph SG_ for a schedule sis a
directed graph defined as follows:
— Every transaction in T(s) is represented as a node in SG,_

— For all pairs t, and t, of transactions in T(s) there is an edge
from ¢, to t,in SG, if and only if there is a conflict between two
operations o,,0,, respectively belonging to ¢, and £,, where o,

is executed prior to 0,, i.e. 0,< 0,

» The terms “serialization graph” and “conflict graph” are both
used for SG_, and both terms may be used at will

+ A schedule s is conflict serializable if and only if SG_ is acyclic

9 September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 10

Example

Consider the schedule s =r,(x) r,(x) w,(x) w,(x)

Then each of {, and t, are represented as a node in SG,
+ We have two conflicts in s: (r,(x),w,(x)) and (r,(x),w,(x))

The conflict graph is as follows:
SG

r (%), w,(x)

ry(x),w,(x)

+ We observe that SG_ is cyclic
* Hence s is not conflict serializable

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann

More about conflicts

- If t and t, have a conflict in a schedule s, and t's operation
comes first, s can only be equivalent to serial plans where t is
performed prior to £,

« Thus for any two transactions we must ensure that the execution
order is the same in all conflicts between them

» However, operations not in conflict may be executed in an
arbitrary order — they commute

* Note:
Two operations are in conflict if and only if the final database
state may be influenced by their execution order

« Pairs of write operations on one object never commute
+ Pairs of read operations always commute

11 September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 12

September 21, 2006

Testing conflict serializability

To determine whether a schedule is conflict serializable we may
construct its conflict graph and test it for cycles

Constructing such a graph may be done in time proportional to
the number of operations in the schedule, and testing for cycles
in the graph is both in average and in worst case proportional to
the square of the number of operations

Thus we have a O(n?)-algorithm, where n is the number of
operations in the schedule, to decide whether the schedule is
conflict serializable or not

This shows that we finally have obtained an equivalence
definition it is feasible to use

The rest is pragmatics

INF5030 - Jon Grov and Ragnar Normann 13

September 21, 2006

Practical schedulers

So, with all this, it should now be simple: update the serialization
graph for each operation, check for cycles and block the
operation or abort if a cycle is detected.

And SG-testing has been implented in research prototypes.

But...

— Real transaction processing is more about engineering than

mathematics.

— Our SG-scheduler has a quite large run-time overhead, and
restricting concurrency (by introducing a more blocking or

aborts) will often pay off.

— This is especially true if the chance of blocking or aborts is
relatively low (i.e. different transaction racing for the same

objects is rare)

INF5030 - Jon Grov and Ragnar Normann 14

September 21, 2006

Two-phase locking

Two-phase locking (2PL) is very simple, ensures conflict-serializability
and has very low runtime overhead.

Transactions must obtain a lock before reading or writing an object.
We have read-locks and write-locks:

— Read-locks can be shared

— Write locks are exclusive

A very important property: As soon as a transaction has released its
lock on object o, it may not acquire new locks on any object.

A conflict-serializable schedule which cannot be produces by a 2PL-
scheduler:

s=rx)rx)ry)wx)r(y)c,c,

INF5030 - Jon Grov and Ragnar Normann 15

September 21, 2006

Example

r(x) ry) w,x) rwyy)r(yec,c,

Scheduler:
request_read (t1 , X)

read lock(t ,x) — r (x)
request read(t,,y)

read_lock(t,,y) — r,(y)
request write(t ,x)

request read (tl, x)

request_read (t1 'Y)

read lock(t ,x)— r,(x)
request_write(t ,y)
write lock(t,,y)— w, (y)
unlock_all (t)

write_lock (t;, X)— M

read lock(t, y)ﬂjy
unlock all(t)

[

tz is blocked since tj's write lock is exclusive

t is finished and releases all locks

.

r(x) ry) w,(x)ry)rx)wyyc,c,

INF5030 - Jon Grov and Ragnar Normann 16

Challenges with 2PL

» Since the end of the 1970-ies, 2PL (in different variants) has been the
predominant scheduling-protocol for transaction processing systems.

+ But there is plenty of motivation to look for alternatives:
— 2PL is relatively strict

— Itis not so well suited for distributed systems where remote locks
require message sending

— Deadlocks may be a problem

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 17

Non-locking schedulers

» So far, we have seen how locks may be used to block
transactions preventively.

» We shall now see three different approaches:
— Precommit-validation, aka optimistic concurrency control
— Timestamp ordering
— Multi-version concurrency control

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 18

Timestamp-ordering

* When initialized, all transactions are assigned a unique,
monotoneusly growing timestamp. Any pair of conflicting
operations must be executed in timestamp order — otherwise,
one of the two transactions in conflict must abort.

* Example:
s=ts(t):=1,1ts(t):=2, r (x), r (x), w_(x)

« Here, we must either abortt or ¢, r (x) <w (x)in s while
ts(t) <ts(t)

« Note that t may commit before ¢ 's write to x. In this case, we
have no choice and must abort ¢ .

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 19

Timestamp-ordering - 2

* Assuming we have a reasonable way to assign timestamps, the

runtime-overhead of this approach has much lower runtime-
overhead than 2PL in a distributed system, and this may pay
well of if the chance of conflicts (and aborts) is low.

« The main disadvantage is that aborts are regarded as expensive

compared to blocking, and “pure” timestamp ordering is rarely (if
ever) seen in practice.

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 20

Optimistic concurrency control

» With optimistic concurrency control, transactions are executed in three
phases:

— Read phase: All read-operations are executed. Updates are buffered and
kept invisble to other transactions.

— Validation phase: When all operations have been tentatively executed
and the transaction requests commit, the scheduler validates the
execution. A transaction t can commit if we have that for every

transaction t where RS(t) N WS(t) # &

— Write phase: All tentative updates are made pemanent

» As with timestamp ordering, it is uncommon to see this particular algorithm in
production systems.

* Nevertheless, the basic idea of deferring validation until transaction commit is
well known and important.

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 21

Non-serializability

» The attractiveness of serializability is full transparency:

— As long as we ensure that all schedules generated by our
scheduler are serializable, the application developer should never
need to worry about inconsistency due to concurrent execution.

+ But as we have seen, this approach has to be conservative: Every
read is assumed to affect every write.

« First: This approach is useless for interactive transactions, e.g. travel
bookings. These are commonly implemented as a sequence of
smaller, independent transactions — this topic will be discussed later.

» Second: Many applications and environments have performance
requirements which makes fully transparent concurrency control
impossible.

« But we still want some concurrency control. The problem is that the
developer should be allowed to say: We don't care about the ordering
of these operations, even if they conflict.

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 22

Concurrency phenomena

* In an attempt to systematize non-serializable scheduling, the SQL-
standard defines the following concurrency phenomena:

— Dirty read: If a transaction reads data written by a concurrent, non-
committed transaction

— Nonrepeatable read: If a transaction reads the same data twice,
and the values are changed meanwhile by some other, now
committed transaction

— Phantom read: If a transaction execute a query with predicate P
twice, and the number of rows returned is changed

September 21, 2006 INF5030 - Jon Grov and Ragnar Normann 23

Isolation levels

Dirty read Nonrepeatable read Phantom read

Read uncommitted Yes Yes Yes
Read committed No Yes Yes
Repeatable read No No Yes
Serializable No No No

Exercise

1. Suggest an isolation level for the following transactions:

A)BEGIN:
nuts = 'SELECT * FROM components WHERE type = 'red'
FOREACH c IN nuts:
UPDATE components SET stock = stock + 1;
COMMIT;
B)BEGIN;
totalweight = 'SELECT SUM(weight) FROM components;'

'UPDATE componets SET fraction = weight/totalweight;'
COMMIT;

2. Oracle's default isolation level is READ COMMITTED. Oracle provides a non-
standard statement SELECT ... FOR UPDATE. What could this be used for?

Multiple versions

So far, we have assumed that on each update, the previous object value is
overwritten.

But in many circumstances, disk and memory is a minor problem.

Consequently, modern database systems ususally keep previous versions
(for a while)

The main purpose of this is increased concurrency:
— Without multiversioning: s =r (x) r,(y) w,(x) r(x) r,(y) w,(y)
— With multiversioning: s"=r,(x) r,(y) w,(x__) r,(X..) [,(Vod W,(Y,0)

Note that s is not serializable, but s’ is final-state equivalent with the serial
schedule s” =r,(x) r,(y) r,(x) r,(y) w,(x) w,(y)

Multiversion-schedules

» Multiversion-schedules is an extension of our previous schedule-conept as
operations now execute on object versions.

* A new version is created each time a transaction updates an object, and we
identify a given version by the id of the creating transaction.

+ We still assume a (fictitious) initializing transaction ¢, creating an initial version
of all objects accessed in the schedule.
+ Example:

S =1,(%)) 1Y) W,(X,) 1,(x) 1,y w,(y.)

* In this model, an update always creates a new version, while a read may
access any previously created version.

Multiversjon-scheduling

A multiversion-schedule accepts an ordinary plan as input and produces a
multiversion-schedule as output.i

Thus, the scheduler now has two tasks:
— Decide an order for executing operations

— Apply a given version-function to decide which version a read-operation
reads from

A traditional scheduler can be regarded as a special case where the version-
function always chooses the most recently created version.

In this context, traditional (non-versioned) schedules are denoted
monoversion-schedules.

The acronym MVCC (MultiVersion Concurrency Control) is commonly used to
describe transaction processing systems providing some kind of multiversion-
support.

Correctness of multiversion-schedules

* Requiring equality with a serial multiversion schedule does
not really make sense, since the read-operations in
principle can read any previous version.

Thus, final-state seriliazability for multiversion schedules
are defined as follows:

A multiversion-schedule m is final-state serializable if and
only if there exists some serial monversion plan m' where m
and m contains the same operations and are final-state
equivalent.

The optimal MVCC-scheduler

The previous definition of conflict is based on commutativity, i.e. the property
that reordering a pair of conflicting operations may change the final state.

In a multiversion-setting, we must know the version-function to decide
whether a pair of operations are commutable or not.

Thus, we cannot apply conflict-graph testing to check whether a multiversion-
schedule is serializable.

On the other hand, we observe that view-serializability is independent of the
version-function: The reads-from relation is well-defined for any multiversion-
schedule independent of the version-function.

But since view-serializability cannot be decided in polynomial time, there is no
(theoretically) optimal scheduler to provide complete multiversion-
serializability.

MVCC in practice

Multiversion-scheduling is widely used in practice, and the
two most important variants are:

— Read-only snapshot (ROS)
— Snapshot isolation (RI)

Both scheduling-strategies are based on a commit-
shapshot:

— A version x, written by transaction f, is included in the
commit-snapshot for a transaction tjif and only if t was
the last transaction to update x among all committed
transactions at tj's initialization.

— In practice, this is implemented by timestamping
transactions at initialization- and commit-time.

Read-only snapshot

ROS is a hybrid algorithm, and the application should declare whether a
transaction is read-only in the request.

A read-only transaction reads from its commit-snapshot: No locking or
validation is required.

Update-transactions are handled by some conventional scheduler, e.g. 2PL.
Example:

m = w,(x,) W(y,) €, r(x;) Wy(X;) C,ryfy,) Wy(x,) w,(y,) c,ry(x;) c

Note that x, is part of the commit-snapshot of ¢, while x, and x, are not.

LF(m)={(t,y, t), (t, X t), (t, x, t.), (t, x,), (t, v, t)}

Consequently, m is view equivalent with the serial monoversion-schedule s=
titt

1°2°3°4

Snapshot isolation

Snapshot Isolation (SI) is a “pragmatic” mutliversion scheduling algorithm,
and it is used by Oracle, MS SQL Server, MySQL and PostgreSQL.

With SlI, all transactions read from their respective commit-snapshot.
But we require the write-sets of any two concurrent transactions to be disjoint.

Sl is Oracle's implementation of the “serializable” isolation level, but it is not
really serializable.

Oracle's standard isolation level is read committed, which is snapshot
isolation where all read-operations read from the read committed-snapshot,
defined as follows:

A version x, written by transaction ¢, is part of the read committed-snapshot
for a read-operation r(x) if and only if { is the most recently committed
transaction among all updaters of x at the time r(x) is executed.

