Middleware for Sensor Networks

Odd Christer Brovig og
Morten Lindeberg
INF5040 - Student Presentation

Agenda
- Introduction
- Research History
- Sensors
- Sensor Networks
- Middleware - challenges
- Middleware - solutions
- MiLAN

INF5040 - Student Presentation
Introduction

- Motivation:
 - Monitor environmental properties, e.g., temperature and light conditions, where power and communication cables are unfeasible, cover large areas with a large number of sensors
 - Ex.1: Monitoring the habitat of endangered birds during their burrows
 - Ex.2: Fire detection in forests
 - Ex.3: Monitor temperatures and humidity to harvest grapes with maximum quality wine at vineyards

Research History #1

- Early research dates back to the cold war
 - Sound Surveillance System (SOSUS) deployed on ocean bottoms to track quiet Soviet submarines.
 - Airborne Warning and Control System (AWACS)
 - Distributed Sensor Networks (DSN) program at Defense Advanced Research Projects Agency (DARPA) around 1980
Research History #2

[Cong et al. 2003 - "Sensor Networks: Evolution, Opportunities, and Challenges]

Future

- Sensors or motes will be small and cheap

mote (plural motes)
1. A small particle; a speck.
Sensors #1

- MICA2 868, 916 MHz(Crossbow technologies)
 - Wireless Platform for Low-Power Sensor Networks
 - 868/916 MHz Multi-Channel Radio Transceiver
 - 38.4 kbps Data Rate Radio
 - Multi Year Battery Life
 - Designed Specifically for Deeply Embedded Sensor Networks
 - Wireless Communications with Every Node as Router Capability

http://www.xbow.com

Sensors #2

- TinyOS:
 - De facto operating system
 - Written in nesC (Simplified C)
 - Simplify access to lowest levels of hardware in an energy-efficient way
 - Only one application at a time
 - Components to modulate packets over radio
 - Read sensor values
 - Synchronize clocks between sender and receiver
 - Put hardware into a low-power state
Sensors #3

- Cont. TinyOS:
 - UART protocol provides reliable mote communication
 - Protocols are packet-size independent
 - Single destination node, called “root-node”
 - Provide ad-hoc multi-hop routing
 - Shortest-path-first algorithm
 - Data movement and route decision engines are split into separate components to permit other route-decision schemes to be integrated in the future
 - Multi-hop routing is transparent to applications

Sensors #4

- Sleep as much as possible!

[Slide from http://telegraph.cs.berkeley.edu/tinydb/]
Sensor Networks

TinyDB

“SELECT temperature, voltage
FROM sensors SAMPLE TIME 1 s”

[http://telegraph.cs.berkeley.edu/tinydb/]

Agenda

- Introduction
- Research History
- Sensors
- Sensor Networks
- Middleware - challenges
- Middleware - solutions
- MiLAN

Morten Lindeberg

Odd Christer Brovig
Middleware – challenges

- Heterogeneous environment
- Dynamic environment, sensors come and go
- Need to support multiple applications on top of node operating software
- Quality of Service in regard to resource usage versus Application needs (precision, coordination, update frequency)
- Two different approaches presented in papers (see references)

Middleware – solutions

- A virtual machine on top of the WSN:
 - Solves heterogeneity issue through abstraction
 - Solves resource allocation since the middleware handles this for the application
 - Solves coordination issue -> middleware responsibility
Clustering

- Allows tracking of dynamic phenomena
- Consists of node guards (perimeter)
- Cluster heads (controls cluster)
- Split/Join of cluster
Middleware – solutions cont.

- Resource management layers allows applications to submit their specific resource profile, the layer then adjust accordingly, approximately dividing resources equal.
- Clustering gives the ability to split the WSN in different zones with different resource usage.

Middleware – 2. solution
Middleware - MiLAN

- MiLAN instances runs on nodes, main MiLAN instance coordinate these
- Abstracts and provide unified resource distribution

References

- Middleware to Support Sensor Network Applications (Heinzelman et al, 2004)