
1

Frank Eliassen, Ifi/UiO 1

Introduction to

Distributed Systems (DS)

INF5040 autumn 2006

lecturer: Frank Eliassen

Frank Eliassen, Ifi/UiO 2

What is a distributed

system?

�Definition [Coulouris & Emmerich]

� A distributed system consists of hardware and
software components located in a network of
computers that communicate and coordinate their
actions only by passing messages.

�Definition [Lamport]

� A distributed system is a system that prevents you
from doing any work when a computer you have
never heard about, fails.

2

Frank Eliassen, Ifi/UiO 3

Types of distributed system

�Distributed Computing Systems
� Used for high performance computing tasks
� Cluster computing systems
� Grid computing systems

�Distributed Information Systems
� Systems mainly for management and integration of
business functions

� Transaction processing systems
� Enterprise Application Integration

�Distributed Pervasive Systems
� Mobile and embedded systems
� Home systems
� Sensor networks

Frank Eliassen, Ifi/UiO 4

A distributed system organized as

middleware

� Layer of software offering a single-system view

�Offers portability and interoperability

� Simplifies development of distributed applications
and services

Distributed

applications

and services

DISTRIBUTION MIDDEWARE

Platform Independent API

Platform Dependent API

. . .
Local OS

1
Local OS

2

Local OS

n

- transaction oriented (ODTP XA)

- message oriented(IBM MQSeries)

- remote procedure call (X/Open DCE)

- object-based (CORBA, COM, Java)

3

Frank Eliassen, Ifi/UiO 5

Implications of distributed systems

� Indpendent failure of components

– “partial failure” & incomplete information

� Unreliable communication

– Loss of connection and messages. Message bit errors

� Unsecure communication

– Possibility of unauthorised recording and modification of messages

� Expensive communication

– Communication between computers usually has less bandwidth, longer
latency, and costs more, than between independent processes on the
same computer

� Concurrency

– components execute in concurrent processes that read and update
shared resources. Requires coordination

� No global clock

– makes coordination difficult

Frank Eliassen, Ifi/UiO 6

Requirements leading to

distributed systems

� resource sharing
– the possibility of using available resources any where

� openness
– an open system can be extended and improved incrementally

� scalability
– serve more users, provide shorter response times

� fault tolerance
– maintain availability even when individual components fail

� heterogeneity
– network and hardware, operating system, programming
languages, implementations by different developers

4

Frank Eliassen, Ifi/UiO 7

Resource sharing

�The opportunity to use available hardware,
software or data any where in the system

�Resource managers control access, offer a
scheme for naming, and controls concurrency

�A resource manager is a software module that
manages a resource of a particular type

�A resource sharing model describes how
� resources are made available

� resources can be used

� service provider and user interact with each other

Frank Eliassen, Ifi/UiO 8

Models for resource sharing

� Client-server resource model
� Server processes act as resource managers, and offer services

(collection of procedures)

� Client processes send requests to servers

� Object-based resource model
� Any entity in a process is modeled as an object with a message

based interface that provides access to its operations

� Any shared resource is modeled as an object

5

Frank Eliassen, Ifi/UiO 9

Openness

� An open DS can be extended and improved incrementally

� Requires a uniform IPC mechanism and publication of
component interfaces (e.g., subject to standardisation)

� IETF RFC: Protocol specifications (www.ietf.org)

� OMG: interface specifications etc. (www.omg.org)

� New components can be integrated with existing
components

Frank Eliassen, Ifi/UiO 10

Concurrency

�Components in DS execute in concurrent
processes

�Components access and update shared resources
(e.g., variables, data bases, device drivers)

� Integrity of the system may be violated if
concurrent updates are not coordinated

� Preservation of integrity requires concurrency
control where concurrent access to the same
resource is synchronized

6

Frank Eliassen, Ifi/UiO 11

Scalability

� A system is scalable if it remains effective when there is
a significant increase in the amount of resources and
number of users

� Internet: no of users and services has grown enormously

� Scalability denotes the ability of a system to handle an
increasing future load

� Requirements of scalability often leads to a distributed
system architecture (several computers)

Frank Eliassen, Ifi/UiO 12

Scalability : challenges

� Controlling the costs of physical resources
� A system with n users is resource-scalable if the amount of

resources required to support them is at most O(n)

� Controlling the performance loss (when the amount of
data increases)
� A system is performance scalable if the time it takes to access

hierarchically ordered data is at most O(log n) where n is the
amount of data

� Preventing software resources running out:
� Dimension data structures o.a. such that the system can meet

future requirements (difficult – cf. IP addresses)

� Avoiding performance bottlenecks
� require decentralized algorithms (partitioning, caching and

replication)

7

Frank Eliassen, Ifi/UiO 13

Failure handling

� Hardware, software and network fail!!

� DS must maintain availability even in cases where
hardware/software/network have low reliability

� Failures in distributed systems are partial
� makes error handling particularly difficult

� Many techniques for handling failures
� Detecting failures (checksum o.a)

� Masking failures (retransmission in protocols, replication …)

� Tolerating failures (as in web-browsers)

� Recovery from failures

� Redundancy (replicate servers in failure-independent ways)

Frank Eliassen, Ifi/UiO 14

Heterogeneity

� Variations and differences that must be handled
� network

– The Internett-protocol is implemented over many different networks

� Hardware

– difference in representation of data types on different processors

� operating system

– API to the same protocol and services varies

� programmng languages

– different representation of character set and data structurs

� implementation by different developers

– ensure that different programs can communicate
• requires agreement on a number of things (cf. standards)

8

Frank Eliassen, Ifi/UiO 15

Transparency

�Transparency hides the consequences of
distribution

�Transparency has different dimensions

�These represents different properties a
distributed system might have (metric to assess
the design of a system)

Frank Eliassen, Ifi/UiO 16

Access transparency

� Enables local and remote resources/components
to be accessed using identical operations

� Example: File system operations in NFS

� Example : Navigation in www

� Example : SQL-queries in distributed data bases

�Components that do not have transparent
access can not easily be moved to another
computer

9

Frank Eliassen, Ifi/UiO 17

Location transparency

� Enables local and remote resources/components to be
accessed without knowledge of their location

� Example: File system operations in NFS

� Example : Web pages (URLs) in www

� Example : Tables in distributed databases

Frank Eliassen, Ifi/UiO 18

Other transparency

dimensions (Coulouris)

�Concurrency transparency

�Replication transparency

�Failure transparency

�Mobility transparency

�Performance transparency

�Scaling transparency

10

Frank Eliassen, Ifi/UiO 19

Distribution transparencies

Access

transparency

Access

transparency
Location

transparency

Location

transparency

Mobility

transparency

Mobility

transparency
Replication

transparency

Replication

transparency
Concurrency

transparency

Concurrency

transparency

Scaling

transparency

Scaling

transparency
Performance

transparency

Performance

transparency
Failure

transparency

Failure

transparency

Frank Eliassen, Ifi/UiO 20

Summary

� Distributed systems:

� harware and software-components located in a network of computers
that communicates and coordinates their actions exclusively by sending
messages

� Consequences of distributed systems

� Independent failure of components

� Unsecure communication

� No global clock

� Requirements like resource sharing, openness, scalability, fault
tolerance and heterogeneity can be satisfied by distributed systems

� Distributed systems organized as middleware

� Harvest potential advantages of distributed systems without
having to pay for all their challenges and problems
(transparency)

11

Frank Eliassen, Ifi/UiO 21

Design of distributed

objects

INF5040 autumn 2006

lecturer: Frank Elassen

Frank Eliassen, Ifi/UiO 22

Design of distributed

objects

�Many has experience with design of local
objects that are all located in the
execution environment of a OO
programming language

�Design of distributed objects is different!

12

Frank Eliassen, Ifi/UiO 23

Design of distributed

objects

Frank Eliassen, Ifi/UiO 24

Local vs distributed objects

�References

�Activation/deactivation

�Migration/mobility

� Persistence

� Latency for method calls

�Concurrency

�Communication

� Security

�Many pit falls!!

13

Frank Eliassen, Ifi/UiO 25

Object references

�References to objects in OOPS are usually
pointers to memory cells

�References to distributed objects are more
complex
� location information

� security information

� references to object type

�References to distributed objects are larger
(e.g., 350 byte i Orbix)

Frank Eliassen, Ifi/UiO 26

Activation/deactivation

�Objects in OOPS reside in main memory during
their whole life time

�This does not always suit distributed objects

� no of objects

� objects can be used over a long period of time

� some servers must be shut down from time to time
without stopping the applications

�Distributed object implementations are

� read into main memory (activation)

� removed from main memory (deactivation)

14

Frank Eliassen, Ifi/UiO 27

Activation/deactivation

�Issues:
� repository for implementations

� association between objects and processes

� explicit vs implicit activation

� when to deactivate objects?

� how to handle concurrent calls

�Who decides?
� Designer?

� Programmer?

� Administrator?

Frank Eliassen, Ifi/UiO 28

Persistence

� Stateless vs stateful objects

� Stateful objects must store its state in a persisent
repository between

� object-deactivation and

� object-activation

�Can be achieved by

� making an external representation for file system

� map to relational database

� object database

�Decided at object design time

15

Frank Eliassen, Ifi/UiO 29

Object life cycle

�Objects in OOPS exist in a single virtual machine

�Distributed objects can be created on different
computers

�Distributed objects can be copied or moved from
one computer to an other

�Removal of objects by “garbage collection” is
difficult in a distributed environment
� Java RMI: “reference counting”

� Jini: “leases”

� Life cycle must be considered at design time of
distributed objects

Frank Eliassen, Ifi/UiO 30

Latency of method calls

�To execute a local method call requires a few
hundred nanoseconds

�A remote method call requires between 0.1 og 10
milliseconds, or more

�⇒ interfaces of distributed objects must be
constructed such that

� methods perform larger processing tasks

� highly frequent method calls are not required

16

Frank Eliassen, Ifi/UiO 31

Parallelism

�Execution of objects in OOPS

� sequential

� concurrent with multiple threads

�Distributed objects execute in parallel

�Can be used to accelerate computations

Frank Eliassen, Ifi/UiO 32

Communication

�Method calls in OOPS are synchronous

�Alternatives for distributed objects:
� synchronous requests

� oneway requests

� deferred synchronous requests

� asynchronous requests

�Who decides for each call?
� designer of service?

� designer of client?

�How to document?

17

Frank Eliassen, Ifi/UiO 33

Security

� Security in OO applications can be handled at
session level

�Objects in OOPS do not have to be written in a
particular way

� For distributed objects
� Who issues the method call?
� How do we know that the client is the one he claims to
be?

� How can we decide whether to grant the client the right to
use the service?

� How can we prove that we have delivered the service to
enable later billing for the use of the service?

Frank Eliassen, Ifi/UiO 34

Summary

� Design of distributed objects is different from design of
programs where all object are located in the same
process

� Many pit falls!!

