
1

Frank Eliassen, Ifi/UiO 1

Introduction to

Distributed Systems (DS)

INF5040/9040 autumn 2009

lecturer: Frank Eliassen

Frank Eliassen, Ifi/UiO 2

Outline

�What is a distributed system?

�Challenges and benefits of distributed
system

�Distribution transparencies

�Types of distributed systems

�Pitfalls when developing distributed
systems

2

Frank Eliassen, Ifi/UiO 3

What is a distributed system?

Many definitions

� [Coulouris & Emmerich]
� A distributed system consists of hardware and software

components located in a network of computers that
communicate and coordinate their actions only by passing
messages

� [Tanenbaum & van Steen]
� A distributed system is a collection of independent computers

that appears to its users as a single coherent system.

� [Lamport]
� A distributed system is a system that prevents you from doing

any work when a computer you have never heard about, fails.

� The above definitions take different perspectives
� Operational perspective
� User perspective
� DS characteristcs perspective

Frank Eliassen, Ifi/UiO 4

A distributed system organized as

middleware

� Layer of software offering a single-system view

�Offers portability and interoperability

� Simplifies development of distributed applications
and services

Distributed

applications

and services

DISTRIBUTION MIDDEWARE

Platform Independent API

Platform Dependent API

. . .
Local OS

1
Local OS

2

Local OS

n

- transaction oriented (ODTP XA)

- message oriented(IBM MQSeries)

- remote procedure call (X/Open DCE)

- object-based (CORBA, COM, Java)

3

Frank Eliassen, Ifi/UiO 5

Networks and distributed

systems

Distributed Systems ViewThe OSI RM

Physical

Link

Network

Transport

Application

Session

Presentation

Physical

MAC

IP

TCP/UDP

Application

Physical

Link

Network

Operating System &

Transport

Application

Middleware

Distributed Sys.

Internet View

Today: Cross-layering is applied in both worlds

Frank Eliassen, Ifi/UiO 6

Implications of distributed systems

� Independent failure of components

– “partial failure” & incomplete information

� Unreliable communication

– Loss of connection and messages. Message bit errors

� Unsecure communication

– Possibility of unauthorised recording and modification of messages

� Expensive communication

– Communication between computers usually has less bandwidth, longer
latency, and costs more, than between independent processes on the
same computer

� Concurrency

– components execute in concurrent processes that read and update
shared resources. Requires coordination

� No global clock

– makes coordination difficult (ordering of events)

4

Frank Eliassen, Ifi/UiO 7

Goals of

distributed systems

� resource sharing
– the possibility of using available resources any where

� openness
– an open distributed system can be extended and improved
incrementally

– requires publication of component interfaces and standards
protocols and for accessing interfaces

� scalability
– the ability to serve more users, provide acceptable response
times with increased amount of data

� fault tolerance
– maintain availability even when individual components fail

� allow heterogeneity
– network and hardware, operating system, programming
languages, implementations by different developers

Frank Eliassen, Ifi/UiO 8

Resource sharing

�The opportunity to use available hardware,
software or data any where in the system

�Resource managers control access, offer a
scheme for naming, and controls concurrency

�A resource manager is a software module that
manages a resource of a particular type

�A resource sharing model describes how
� resources are made available

� resources can be used

� service provider and user interact with each other

5

Frank Eliassen, Ifi/UiO 9

Models for resource sharing

� Client-server resource model
� Server processes act as resource managers, and offer services

(collection of procedures)

� Client processes send requests to servers

� HTTP defines a client-server resource model

� Object-based resource model
� Any entity in a process is modeled as an object with a message

based interface that provides access to its operations

� Any shared resource is modeled as an object

� Object based middlewares (CORBA, Java RMI) defines object-
based resource models

Frank Eliassen, Ifi/UiO 10

Scalability

� A system is scalable if it remains effective when there is
a significant increase in the amount of resources (data)
and number of users

� Internet: no of users and services has grown enormously

� Scalability denotes the ability of a system to handle an
increasing future load

� Requirements of scalability often leads to a distributed
system architecture (several computers)

6

Frank Eliassen, Ifi/UiO 11

Scalability problems (1)

�Often caused by centralized solutions

Frank Eliassen, Ifi/UiO 12

Scalability problems (2)

�Characteristics of decentralized algorithms:

� No machine has complete information about
the system state.

� Machines make decisions based only on local
information.

� Failure of one machine does not ruin the
algorithm.

� There is no implicit assumption that a global
clock exists.

7

Frank Eliassen, Ifi/UiO 13

Scaling techniques (1)

�Distribution
� splitting a resource (such as data) into smaller parts,

and spreading the parts across the system (cf DNS)

�Replication
� replicate resources (services, data) across the system

� increases availability, helps to balance load

� caching (special form of replication)

�Hiding communication latencies
� avoid waiting for responses to remote service requests

(use asynchronous communication or design to reduce
the amount of remote requests)

Frank Eliassen, Ifi/UiO 14

Scaling techniques (2)

� Reducing amount of remote requests: The difference
between letting (a) a server or (b) a client check forms
as they are being filled.

8

Frank Eliassen, Ifi/UiO 15

Failure handling

� Hardware, software and network fail!!

� DS must maintain availability even in cases where
hardware/software/network have low reliability

� Failures in distributed systems are partial
� makes error handling particularly difficult

� Many techniques for handling failures
� Detecting failures (checksum a.o.)

� Masking failures (retransmission in protocols)

� Tolerating failures (as in web-browsers)

� Recovery from failures

� Redundancy (replicate servers in failure-independent ways)

Frank Eliassen, Ifi/UiO 16

Example: Google File-System
Early days…

…todayChallenges:

- Scalability

- Fault-tolerance

- Auto recovery

Challenges:

- Scalability

- Fault-tolerance

- Auto recovery

9

Frank Eliassen, Ifi/UiO 17

Distribution transparency

�An important goal of a distributed system
is to hide the fact that its processes and
resources are physically distributed across
multiple computers

�A distributed system that is able to present
itself to its users and applications as if it
were only a single computer system is said
to be transparent

Frank Eliassen, Ifi/UiO 18

Transparency in a distributed

system

Different forms of transparency in a distributed system (ISO, 1995).

Trade-off between degree of transparency and performance of a system

10

Frank Eliassen, Ifi/UiO 19

Types of distributed system

�Distributed Computing Systems
� Used for high performance computing tasks
� Cluster computing systems
� Grid computing systems

�Distributed Information Systems
� Systems mainly for management and integration of

business functions
� Transaction processing systems
� Enterprise Application Integration

�Distributed Pervasive (or Ubiquitous) Systems
� Mobile and embedded systems
� Home systems
� Sensor networks

Frank Eliassen, Ifi/UiO 20

Cluster Computing Systems

An example of a cluster computing system.

Collection of similar PCs, closely connected, all run same OS

11

Frank Eliassen, Ifi/UiO 21

Grid Computing Systems

A layered architecture for grid computing systems.

Federation of autonomous and heterogeneous
computer systems (HW,OS,...), several adm domains

Frank Eliassen, Ifi/UiO 22

Enterprise Application Integration

Middleware as a communication facilitator in enterprise
application integration

Allowing existing applications to directly exchange
information using communication middleware

12

Frank Eliassen, Ifi/UiO 23

IDL

Z

foo()

Example communcation

middleware: CORBA

Object Request Broker (ORB)

Clients may invoke methods of remote objects without worrying about:

object location, programming language,

operating system platform, communcation

protocols or hardware.

Common object model

Different

programming languages

(or object models)

IDL

X

invoke Z’s

method

foo()

IDL

Y

RMI over IIOP

Frank Eliassen, Ifi/UiO 24

Distributed Pervasive

Systems

�Devices in distributed pervasive systems
discovers the environment and establishes
themselves in this environment as best as
possible.

� Requirements for pervasive applications
� Embrace contextual changes.

� Encourage ad hoc composition.

� Recognize sharing as the default.

13

Frank Eliassen, Ifi/UiO 25

device

context

user

context

environment

context user

context-aware,

self-adaptive

applications

provided utility

battery

memory use

temperature
light

CPU use

position
activity

(e.g., driving)

MUSIC Middleware

adapts
optimizes

monitors

varying context

QUA/MUSIC context-aware adaptation

middleware for distributed pervasive systems

Frank Eliassen, Ifi/UiO 26

Pitfalls when Developing

Distributed Systems

�False assumptions made by first time
developer:
� The network is reliable.
� The network is secure.
� The network is homogeneous.
� The topology does not change.
� Latency is zero.
� Bandwidth is infinite.
� Transport cost is zero.
� There is one administrator.

14

Frank Eliassen, Ifi/UiO 27

Summary

� Distributed systems:
� components located in a network that communicates and

coordinates their actions exclusively by sending messages.

� Consequences of distributed systems
� Independent failure of components

� Unsecure communication

� No global clock

� Distribution transparency: providing a single computer
system view

� Requirements like resource sharing, openness,
scalability, fault tolerance and heterogeneity can be
satisfied by distributed systems

� Many pitfalls when developing distributed systems

