Introduction to
Distributed Systems (DS)

INF5040/9040 autumn 2009

lecturer: Frank Eliassen

Frank Eliassen, [fi/UiO

Outline

What is a distributed system?

Challenges and benefits of distributed
system

Distribution transparencies
Types of distributed systems

Pitfalls when developing distributed
systems

Frank Eliassen, Ifi/UiO

What is a distributed system?
Many definitions

[Coulouris & Emmerich]
A distributed system consists of hardware and software
components located in a network of computers that
communicate and coordinate their actions only by passing
messages
[Tanenbaum & van Steen]
A distributed system is a collection of independent computers
that appears to its users as a single coherent system.
[Lamport]
A distributed system is a system that prevents you from doing
any work when a computer you have never heard about, fails.
The above definitions take different perspectives
Operational perspective
User perspective
DS characteristcs perspective

Frank Eliassen, Ifi/UiO 3

A distributed system organized as
middleware

Layer of software offering a single-system view
Offers portability and interoperability

Simplifies development of distributed applications
and services

Distributed
29.” applications
Xﬂ and services

Platform Independent API - transaction oriented (ODTP XA)

‘ DISTRIBUTION MIDDEWARE ‘ - message oriented(IBM MQSeries)
- remote procedure call (X/Open DCE)

Platform Dependent API - object-based (CORBA, COM, Java)

Frank Eliassen, Ifi/UiO 4

Networks and distributed
systems

The OSI RM Internet View Distributed Systems View
Application A Application
Presentation Application Distributed Sys.
Session A Mid leware
Transport Tep/upp JPefit::fsi\gttem &
Network IP Network
Link MAC V ik
Physical W Physical

Today: Cross-layering is applied in both worlds
Frank Eliassen, [fi/UiO 5

Implications of distributed systems

Independent failure of components
“partial failure” & incomplete information
Unreliable communication
Loss of connection and messages. Message bit errors
Unsecure communication
Possibility of unauthorised recording and modification of messages
Expensive communication

Communication between computers usually has less bandwidth, longer
latency, and costs more, than between independent processes on the
same computer

Concurrency

components execute in concurrent processes that read and update
shared resources. Requires coordination

No global clock
makes coordination difficult (ordering of events)

Frank Eliassen, Ifi/UiO 6

Goals of
distributed systems

resource sharing
the possibility of using available resources any where

openness
an open distributed system can be extended and improved
incrementally
requires publication of component interfaces and standards
protocols and for accessing interfaces

scalability
the ability to serve more users, provide acceptable response
times with increased amount of data

fault tolerance
maintain availability even when individual components fail

allow heterogeneity

network and hardware, operating system, programming
languages, implementations by different developers
Frank Eliassen, [fi/UiO

Resource sharing

The opportunity to use available hardware,
software or data any where in the system

Resource managers control access, offer a
scheme for naming, and controls concurrency

A resource manager is a software module that
manages a resource of a particular type

A resource sharing model describes how
resources are made available
resources can be used
service provider and user interact with each other

Frank Eliassen, Ifi/UiO

Models for resource sharing

Client-server resource model

Server processes act as resource managers, and offer services
(collection of procedures)

Client processes send requests to servers
HTTP defines a client-server resource model
Object-based resource model

Any entity in a process is modeled as an object with a message
based interface that provides access to its operations

Any shared resource is modeled as an object

Object based middlewares (CORBA, Java RMI) defines object-
based resource models

Frank Eliassen, Ifi/UiO 9

Scalability

A system is scalable if it remains effective when there is
a significant increase in the amount of resources (data)
and number of users

Internet: no of users and services has grown enormously

Scalability denotes the ability of a system to handle an
increasing future load

Requirements of scalability often leads to a distributed
system architecture (several computers)

Frank Eliassen, Ifi/UiO 10

Scalability problems (1)

Often caused by centralized solutions

Concept Example

Centralized services | A single server for all users

Centralized data A single on-line felephone book

Centralized algorithms | Doing routing based on complete information

Frank Eliassen, [fi/UiO 1

Scalability problems (2)

Characteristics of decentralized algorithms:

No machine has complete information about
the system state.

Machines make decisions based only on local
information.

Failure of one machine does not ruin the
algorithm.

There is no implicit assumption that a global
clock exists.

Frank Eliassen, Ifi/UiO 12

Scaling techniques (1)

Distribution
splitting a resource (such as data) into smaller parts,
and spreading the parts across the system (cf DNS)
Replication
replicate resources (services, data) across the system
increases availability, helps to balance load
caching (special form of replication)

Hiding communication latencies

avoid waiting for responses to remote service requests
(use asynchronous communication or design to reduce
the amount of remote requests)

Frank Eliassen, [fi/UiO 13

Scaling techniques (2)

Gl Shrr
[FIRST ManE [Eaamen i _-\-.:i# = -
|LaET ManE [T o
IE-MaL ; e |
: -
- F. - .
- 4 K
Cheoi lone Prooess fon
{a)
e e
J |
P T ke [Ty | - I -
g [E L)
ML [ETEE R mod v = | Hedd AT b -
| o[
3 _L-_
Chech loem R

Reducing amount of remote requests: The difference
between letting (a? a server or (b) a client check forms
as they are being filled.

Frank Eliassen, Ifi/UiO 14

Failure handling

Hardware, software and network fail!!

DS must maintain availability even in cases where
hardware/software/network have low reliability
Failures in distributed systems are partial

makes error handling particularly difficult
Many techniques for handling failures

Detecting failures (checksum a.o.)

Masking failures (retransmission in protocols)

Tolerating failures (as in web-browsers)

Recovery from failures

Redundancy (replicate servers in failure-independent ways)

Frank Eliassen, Ifi/UiO 15

Example: Google File-System

Early days...

L

Challenges:

M - Scalability
- Fault-tolerance
- Auto recovery

Distribution transparency

An important goal of a distributed system
is to hide the fact that its processes and
resources are physically distributed across
multiple computers

A distributed system that is able to present
itself to its users and applications as if it
were only a single computer system is said
to be transparent

Frank Eliassen, [fi/UiO 17

Transparency in a distributed

system
Transparency Description
Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located
Migration Hide that a resource may move to another location
Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource 1s replicated
Concurrency | Hide that a resource may be shared by several compefitive users
Failure Hide the fallure and recovery of a resource

Different forms of transparency in a distributed system (ISO, 1995).
Trade-off between degree of transparency and performance of a system

Frank Eliassen, Ifi/UiO 18

Types of distributed system

Distributed Computing Systems
Used for high performance computing tasks
Cluster computing systems
Grid computing systems

Distributed Information Systems

Systems mainly for management and integration of
business functions

Transaction processing systems
Enterprise Application Integration

Distributed Pervasive (or Ubiquitous) Systems
Mobile and embedded systems
Home systems

Sensor networks
Frank Eliassen, [fi/UiO 19

Cluster Computing Systems

Collection of similar PCs, closely connected, all run same OS

Master nade Computa noda Lomputa noga Comgpute node

Managoemar Companani Componant Componant
apphcatan ol af o

A — pavral el paralied "X E R paradel
Pasalial IIB?] applcatan appicatan application

[LocalOs [Locaios || || Locaios " Local0s |

L L1 S [T——— _—EI:
Ramole soeess r r Stardarnd nebwor
T [S I ol

High-spead network

An example of a cluster computing system.

Frank Eliassen, Ifi/UiO 20

10

Grid Computing Systems

Federation of autonomous and heterogeneous
computer systems (HW,0S,...), several adm domains

| Applications |

r
| Collective layer |

k4 v
| Connectivity layer |—| Resource layer

h 4 A4
| Fabric layer |

A layered architecture for grid computing systems.

Frank Eliassen, [fi/UiO 21

Enterprise Application Integration

Allowing existing applications to directly exchange
information using communication middleware

Cilient Chient
application application

] |
| Communication middlewara

Server-side
application

— s s ——1—

o &= o=

Middleware as a communication facilitator in enterprise
application integration ¢, giassen, rrivio 22

Server-side
application

Servar-sida
application

11

Example communcation
middleware: CORBA

Clients may invoke methods of remote objects without worrying about:
object location, programming language,
operating system platform, communcation
protocols or hardware.

Different
invoke Z’s programming languages
(or object models)

Common object model

Object Request Broker (ORB) RMI over I1OP

Frank Eliassen, [fi/UiO 23

Distributed Pervasive
Systems

Devices in distributed pervasive systems
discovers the environment and establishes
themselves in this environment as best as
possible.
Requirements for pervasive applications
Embrace contextual changes.
Encourage ad hoc composition.
Recognize sharing as the default.

Frank Eliassen, Ifi/UiO 24

12

QUA/MUSIC context-aware adaptation
middleware for distributed pervasive systems

i ®

temperature light

varying context

applications

~4 environment !

. - context-aware,
% provided utility self-adaptive

user
context

context .4 user ‘
P s T, £ 3

/

MUSIC Middleware]

= device |
confext= =¥

Frank Eliassen, [fi/UiO 25

Pitfalls when Developing
Distributed Systems

False assumptions made by first time
developer:

The network is reliable.

The network is secure.

The network is homogeneous.
The topology does not change.
Latency is zero.

Bandwidth is infinite.
Transport cost is zero.

There is one administrator.

Frank Eliassen, Ifi/UiO 26

13

Summary

Distributed systems:

components located in a network that communicates and

coordinates their actions exclusively by sending messages.
Consequences of distributed systems

Independent failure of components

Unsecure communication

No global clock
Distribution transparency: providing a single computer
system view
Requirements like resource sharing, openness,
scalability, fault tolerance and heterogeneity can be
satisfied by distributed systems

Many pitfalls when developing distributed systems

Frank Eliassen, [fi/UiO 27

14

