Introduction to Video Encoding

INF5063

Håvard Espeland

15. October 2010
History of MPEG

• Motion Picture Experts Group
 – MPEG1 work started in 1988, published by ISO in 1993
 • MP2 and MP3 Audio
 – MPEG2 was published in 1996 together with ITU
 • 11 parts in total
 • Part 2 Video also known as H.262, used on DVD
 • Part 3 Audio (improved MP3) and Part 7 Audio (AAC)
History of MPEG

- MPEG4 was introduced in 1996
 - 27 parts in total, all known as MPEG4
 - Part 2 Visual (H.263): Simple Profile, Advanced Simple Profile (ASP)
 - Colloquially called MPEG4 (until recently)
 - Widely used in broadcasting, teleconferencing
 - Compresses much better than MPEG2
 - Often referred to by the name of the encoder (DivX, Xvid)
 - Part 3 Audio: AAC+, CELP, and more.
MPEG4

- Part 10 (H.264): Advanced Video Coding (AVC)
 - Introduced in 2003, and is still the most efficient (standardised) codec available
 - Up to about twice the compression of MPEG4 ASP
 - Used by Bluray, Rikstv, Youtube, and many others
 - Also referred to by the name of a specific encoder (x264)
 - 17 profiles, including Multiview High Profile (MVC) for stereo (3D) video, and Scalable High Profile (SVC) for adaptive streaming and trick-play functionality.
 - Covered by roughly 1500 patents worldwide
Along came Google...

- Bought On2 in February 2010
 - Released the VP8 codec specification with a royalty free license in May 2010 together with an open-source implementation (libvpx)
 - Also released a container format (webm) based on Matroska (mkv) to distribute VP8 together with Vorbis.
- VP8 is very similar to H.264, but only supports a small subset of the features
- Supported by all major browser vendors, VP8 is expected to dominate web video in the coming years.
Video standards

• The latest version of the H.264 specification has more than 600 pages, costs 294 CHF and can be bought from ISO/ITU.

• The VP8 standard has only 104 pages and is available for free from http://webmproject.org

• Video standards only describe *decoding* of the bitstream. The black art of *encoding* video is left as an excercise to implementers.
MJPEG Encoder Overview

\[F_n \text{ (current)} \rightarrow T \rightarrow Q \rightarrow \text{Entropy encode} \rightarrow \text{MJPEG} \]
H.264 / VP8 Encoder Overview
Macroblock Types

- Macroblocks are 16x16 pixels, but can be subdivided down to 4x4 pixels. In H.264 they are of type I, P or B
 - Intra-MBs use Intra-prediction
 - Predicted MBs use Inter-prediction
 - Bi-Directional Predicted MBs use prediction both backward and forward in time
Frame types

- Traditional frame types are I-, P- and B-frames.
 - Intra-predicted frames can only use I-macroblocks.
 - Predicted frames can only use I- and P-macroblocks.
 - Bi-Directional predicted frames can use I-, P- and B-macroblocks

- VP8 does not have the concept of B-frames, but instead provides Alt-ref and Golden frames
 - Alt-ref frames are never showed to the user, and are only used for prediction
Inter-Prediction

- Predict a macroblock by reusing pixels from another frame
 - Objects tend to move around in a video, and motion vectors are used to compensate for this
 - H.264 allows up to 16 reference frames, while VP8 only supports 3 frames
Determining Prediction Modes

- Motion estimator tries as many modes and parameters as possible given a set of restrictions
 - The restrictions can be frame type, encoding time, heuristics, and possibly many more
- The different modes are evaluated with a cost function
- The estimator often use a two-step process, with initial coarse evaluation and refinements
- Refinements include trying every block in the area, and also using sub-pixel precision (interpolation)
- Many algorithms exist designed for different restrictions
Cost Functions

• Typically Sum of Absolute Differences (SAD) or Sum of Absolute Transformed Differences (SATD)

• SATD transforms the sum with a Hadamard transformation
 – More accurate than SAD

\[
SAD = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} |I_{i,j} - T_{i,j}|
\]
Diamond Motion Estimation Pattern
Motion Compensation

• When the best motion vector has been found and refined, a predicted image is generated using the motion vectors.

• The reference frame can not be used directly as input to the motion compensator.
 - The decoder never sees the original image. Instead, it sees a reconstructed image, i.e. an image that has been quantized (with loss).

• A reconstructed reference image must be used as input to motion compensation.
Intra-Prediction

• Predict the pixels of a macroblock using information available within a single frame

• Typically predicts from left, top and top-left macroblock by inter- or extrapolating the border pixel's values

• Many prediction modes available, e.g. horizontal, vertical, average

Figure from vcodex.com
H.264 / VP8 Encoder Overview

- **F_n** (current)
- **F'_{n-1}** (reference) (1 or 2 previously encoded frames)
- **F'_n** (reconstructed)
- **ME**
- **MC**
- **Choose Intra prediction**
- **Intra prediction**
- **Filter**
- **D_n**
- **D'_n**
- **T**
- **Q**
- **T^{-1}**
- **Q^{-1}**
- **Reorder**
- **Entropy encode**
- **NAL**

[simula . research laboratory] Håvard Espeland - by thinking constantly about it
Residual Transformation

• The pixel difference between the original frame and the prediction is called residuals.
• Since the residuals only express the difference from the prediction, they are much more compact than full pixel values such as in JPEG.
• Residuals are transformed using DCT (H.264) or a combination of DCT and Hadamard (VP8).
• Other alternatives exist such as Wavelets (Dirac).
• VP8 and H.264 use 4x4 DCT functions to reduce computation complexity.
Quantization and Rate Control

• Divide the transformed residuals (coefficients) with a quantization matrix
 – Decimates the precision of the pixel frequencies, i.e. the lossy part of a video codec
 – The matrix is often scaled with a quantization parameter (qp) to a desired level of reduction

• Each frame is given a bit budget and qp is adjusted to match the budget
H.264 / VP8 Encoder Overview
Frame Reconstruction

• The motion compensator requires as input the same reference frame as the decoder will see

• De-quantize and inverse transform the residuals and add them to our predicted frame
 – The result is the same reconstructed frame as the decoder will receive

• To increase visual quality, H.264 and VP8 use a deblocking filter to remove hard edges from the macroblocks
H.264 / VP8 Encoder Overview
Frame Reordering

- In H.264, B-frames may reference *future* frames
- The frames are reordered in such a way that frames used for predicting other frames are decoded first
- In practice, this means that decoding order and display order of frames may differ
- VP8 does not have this concept, but can instead use alt-ref frames for prediction
Entropy Coding

- The motion vectors, intra-predictors, encoder parameters and residuals must be stored somehow.
- The entropy coding process is lossless, and removes redundancy from the output bitstream.
- Many alternatives exist:
 - Variable Length Coding with RLE (MPEG4 ASP)
 - Arithmetic Coding (H.264 and VP8)
 - Exp-Golomb Coding (VC-1)
- The symbol probabilities change over time and are continuously updated by the encoder.
- The symbol probabilities may depend on the context.
Variable Length Coding - Huffman

- Since the literals we want to store varies in length, VLC prepends the literal with a symbol that represents the length of the literal instead of storing the maximum length bits.

<table>
<thead>
<tr>
<th>Prefix Code</th>
<th>Bit Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>101</td>
<td>4</td>
</tr>
<tr>
<td>110</td>
<td>5</td>
</tr>
<tr>
<td>1110</td>
<td>6</td>
</tr>
<tr>
<td>11110</td>
<td>7</td>
</tr>
</tbody>
</table>

To store an `uint8_t v1 = 7;`

```c
bit_width(7) = 3
```

Output: 100 111 (6 bits)

Store `uint8_t v2 = 0;`

```c
bit_width(0) = 0
```

Output: 00
Arithmetic Coding

- Encodes the entire message into a single number between 0.0 and 1.0.
- Allows a symbol to be stored in less than 1 bit (!)

Encode IXP as a number between 0.6472 and 0.6485, e.g. 0.648 = 1010001000
Parallel Encoding

• Many approaches available both for Intra and Inter prediction

• Some of these give up compression efficiency for increased parallelity.

• Pipeline-approaches do not combine well with realtime-encoders
GOP-based Approach

• Delay pictures until there are multiple keyframes within the encoder pipeline
• Intra-frames do not depend on previous frames, and thus can be used as starting points for multiple encodes
• Adds a considerable pipeline to the encoder
Slice-Based Approach

- Split every frame in one or more slices
- Supported by H.264
- Slices are completely independent – one may not predict across borders
- Severely hurts compression efficiency
- Typically used by the Apple H.264 compressor
Triangle Intra-Prediction

• MBs depend on the left, top and top-left MB relative to its own position
• As soon as those dependencies are satisfied, the encoder can process in parallel without sacrificing encoder efficiency
Original-Frame Approach

• Both Intra- and Inter-prediction can use the original frame instead of the *reconstructed* frame when evaluating prediction modes

• However, when doing the actual motion compensation and intra-prediction, the encoder *must* use the reconstructed frame – if not there will be a drift between the encoder and decoder

• This approach reduces the quality of predictions
MV-Search Within a Frame

• When the reference frame has been fully reconstructed, the Motion Estimator tries for every macroblock to compensate for motion

• Since every motion vector is independent in the estimator, all MVs in a single frame can be search for in parallel

• When using optimized MV search patterns that takes advantage of the nearby block's MVs, this must be done in a manner similar to triangle intra-prediction

• Does not reduce encoding efficiency
MV-Search Across Frame Boundaries

- Reconstruct part of the frame as soon as the ME is finished with a macroblock.
- When a large enough area has been reconstructed of the reference frame, the next frame's ME can start searching MVs that can only be found in this area.
- The same technique can be used on multiple frames simultaneously.
- Requires synchronization on macroblock level.
- Advanced technique with good performance:
 - Does not reduce encoding efficiency.
 - Adds a pipeline to the encoder – but it does not have to be deep. A few frame's delay can be acceptable for realtime encoding.
Video Quality Assessment

• Evaluating video quality is a research field by itself
• Usually requires a panel of subjects that rate which version is best
 – Subjects have different preferences for artifacts and quality reductions
• Objective measurements give a rough number which says something about the difference between the original frames and the reconstructed frames
 – Typically SSIM or PSNR
 – A shell script for finding PSNR values of YUV frames can be found in the mplayer source tree under TOOLS/
Conclusion

• Video encoding is mainly about trying (and failing) different prediction modes limited by user-defined restrictions (resource usage)

• The “actual” encoding of the video when the parameters are known usually accounts for a small percentage of the running time

• Any (reasonable) codec can produce the desired video quality – what differs between them is the size of the output bitstream they produce