GSM speech coding

Wolfgang Leister
Forelesning INF 5080
Vårsemester 2004

Norsk Regnesentral

Sources

This part contains material from:

- Web pages Universität Bremen, Arbeitsbereich Nachrichtentechnik (ANT): Prof. K.D. Kammeyer, Jörg Bitzer, Frank Jordan, Volker Kühn
 http://www.comm.uni-bremen.de/
 whomes/meyer/gsm_coder.html
- Sten Amundsen (INF-MKT presentation 2003)

Norsk Regnesentral
GSM

- Global System for Mobile communications,
 - originally developed for Europe
 - has now over 70% of the world market.
- Initially developed for operation in the 900MHz band and subsequently modified for the 850, 1800 and 1900MHz bands.
- GSM = Groupe Speciale Mobile (CEPT committee), 1982
- 1987: Memorandum to implement
- 1991: Start of operation

Best possible use of frequencies
- lower bandwidth than PSTN, LAN, WAN, etc: 13kBit/s
- mobile networks suffer from interferences and dropouts
 - but: not disturb end user
- GSM uses block coding
 - PCM and MPEG-1, MPEG-2 uses continuous coding
- Originally GSM is designed for:
 - One channel 16 kbit/s
 - Noise: BER of 10^{-2}
 - Maximum coding delay: 30 ms
GSM system architecture

- radio access network and base net.
- Speech connection between GSM phone and PSTN or GSM

Sender Functionality

- Speech encoder receives PCM coded speech.
- Speech detector marks frames whether they contain speech.
- Background noise is sent in "silent suppression" mode.
Receiver Functionality

- Speech decoder gets 13 kbit/s speech
- Speech frame interpolation replaces frames lost in transmission (using last received frame)
- Generate background noise using noise frames.

Speech coding

- **Speech:**
 - bandwidth ca. 12 kHz
 - dynamics: 100 dB (whisper-shout)
 - 20 Bit resolution at 24kHz sampling rate: 480 kBit/s

- **Understandable speech:**
 - bandwidth 300Hz-3400Hz (telephone)
 - dynamics: 50 dB
 - 8 Bit resolution at 8kHz sampling rate: 64 kBit/s

- **Handy:** 13 kBit/s
 - coding of speech signal necessary (source coding)
What is speech?

- **Speech Generation:**
 - Lungs produce air stream
 - Vocal chord vibrates/opens
 - Mouth/Nose finalize sound

- **Artificial Speech Model:**
 - Source → All-Pol Filter → Synthetic Voice →

GSM speech encoder overview

Five Steps:
- AD conversion
- PCM sample blocks
- LPC = Linear Predictive Coding
- LTP = Long-Term Prediction
- RPE = Regular Pulse Excitation
GSM Speech encoder

- **Step 1:** produce digital audio/speech signal (microphone, low-pass filter, A/D converter)
- **Step 2:** Split up in blocks of 20 ms (160 samples)
 statistical parameters do not change in short time intervals
 (assume: short-time stationary behaviour)

GSM Speech encoder

- **Step 3:** Linear Predictive Coding
 Find filter coefficients with parametric estimation, e.g., Burg Algorithm
 Find reflection coefficients for lower data rate, quantize logarithmically
 Filter signal with quantized coefficients
 LPC uses 36 Bit/160 Samples transfer rate

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Werr</td>
<td>-0.932</td>
<td>0.735</td>
<td>0.145</td>
<td>0.69</td>
<td>-0.16</td>
<td>0.36</td>
<td>-0.2</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

Norsk Regnesentral

Wolfgang Leister
GSM Speech encoder

- Step 4: Long-Term Prediction

 Split blocks into four parts of 40 samples each.

 There are still similarities in the encoding!

 For each block calculate difference to

 RPE from last step (cross-correlation)

 Calculate translation N0 and amplification b

 LPT uses (2+7)*4 Bit/160 samples transfer rate

- Step 5: Regular Pulse Excitation

 (a) Low pass filter with linear phase TP of degree 10
GSM Speech encoder

- Step 5: Regular Pulse Excitation
 - (b) Split rest signal into 3 polyphases
 - chose polyphase with largest energy
 - (c) Normation of max value of chose sequence (6bit)
 - quantize these 13 values with 3 bit linear

- RPE uses \((2+6+13*3)*4\) Bit/160 samples transfer rate

GSM transfer rate

For 160 samples we need:

<table>
<thead>
<tr>
<th></th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPC filter coefficients</td>
<td>36</td>
</tr>
<tr>
<td>LTP filter coefficients</td>
<td>((7+2)*4) 36 Bit</td>
</tr>
<tr>
<td>Index and Norm Step 5</td>
<td>((6+2)*4) 32 Bit</td>
</tr>
<tr>
<td>Rest signal</td>
<td>(1334) 156 Bit</td>
</tr>
<tr>
<td></td>
<td>260 Bit</td>
</tr>
</tbody>
</table>

Data rate: 260bit/20ms = 13kbit/s
GSM speech coding

- Encoder consists of following parts:
 - Short term LPC (Linear Prediction Coding) -analysis
 - Short term LPC-filter
 - Long term LTP (Long Term Prediction) -analysis
 - Long term LTP-filter
 - RPE (Regular Pulse Excitation) position and coding of rest signal

LPE-LPT speech decoder

- Decoder consists of three parts:
 - RPE decoding and position
 - LTP synthesis filter
 - LPC short time synthesis filter
GSM Sound examples

- Original
- GSM full-rate 13 kBit/s, error-free transmission
- Enhanced GSM full-rate 12.2 kBit/s, error-free transmission
- GSM half-rate 5.6 kBit/s, error-free transmission
- old Vocoder 5 kBit/s (no standard)

<table>
<thead>
<tr>
<th>Original</th>
<th>GSM full-rate, 13 kBit/s</th>
<th>Enhanced GSM full-rate, 12.2 kBit/s</th>
<th>GSM half-rate, 5.6 kBit/s</th>
<th>Old Vocoder (5 kBit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male voice, English, 8 kHz, 16 Bit linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male voice, German, 8 kHz, 16 Bit linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music sample, 8 kHz, 16 Bit linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future Development

- GSM is an ETSI standard
- RPE-LPT standardised for GSM by ETSI
- Three RPE-LTP speech coder standards:
 - FR: Full rate: 13 kbit/s
 - HR: Half rate: 5.6 kbit/s (frequency usage better, worse speech quality)
 - EFR: enhanced full rate: 12.2 kbit/s (better speech quality than FR)
- New specifications by ETSI
- Defines dynamic way to change speech encoders
End of Part

Thank you for your attention!