INF 5090: Advanced Topics in Distributed Systems
– a distributed, international graduate course –
Thomas Plagemann, Knut Omang, Stein Kristiansen

Outline

• Background
• Basic idea and approach
• Content of the course
• Time schedule
• Lab assignments
• Collaboration
• Tools
• Credits, marks, and grading
• Benefits
Overall goal

• Learn about important developments in the future Internet
 – Classical lecture
 – Hands on in team work

• Do something more exciting ….
 … Go international!

Basic Idea and Goals

• Provide a framework for intensive European collaboration in graduate-level courses/seminars
• Provide high quality lectures from internationally recognized lecturers
• Let students from different European Universities work together in one team to solve concrete assignments
• Enable personal contacts between lecturers, students, and teaching assistants (TAs)
• All institutions should benefit in teaching and research from this course/seminar
• Keep administrative overhead acceptable
• Keep traveling costs (monetary and time) low
History of Support

- **E-NEXT (Emerging Networking Experiments and Technologies)**
 - Networked audiovisual systems and home platforms
 - 1/01/2004 - 31/12/2005
 - EU, IST, FP6-506869
 - 41 partners

- **CONTENT (CONTENT NETWORKS AND SERVICES FOR HOME USERS)**
 - Networked Audiovisual Systems
 - 1/07/2006 - 30/06/2009
 - EU, IST-2006-38423
 - 11 partners

- **EINS (NETWORK OF EXCELLENCE IN INTERNET SCIENCE)**
 - Future Internet
 - 1/12/2011 – 1/5/2015
 - EU, FP7, ICT, 288021
 - 33 partners

History of Involvement

- **Involved organizations (since the beginning):**
 - [List of universities and organizations]
Who is Teaching this Year?

– University of Mannheim (Germany):
 Wolfgang Effelsberg, Stephan Kopf, Phillip Mildner

– University of Oslo (Norway):
 Thomas Plagemann, Knut Omang, Stein Kristiansen

– Possibly additional guest lectures

What are we teaching?

Future Internet

Evolutionary:
- Multicast and CacheCast
- Streaming through firewalls and NATS
- Mobile Ad-Hoc Networks
- Network virtualization

Revolutionary:
- Basic principles
- Delay tolerant networking
- Autonomic Networking in ANA
- Sensor networks, DSMS and events
- Data Center Networks
Preliminary Lecture Plan

http://www.uio.no/studier/emner/matnat/ifi/INF5090/h15/timeplan/index.html#FOR

Lab Assignments

• A team of 4 students works on one assignment
 – Normally 2 local students together with 2 remote students
• Time frame for lab assignments: 21. 9. – 2. 11.
• The deliverables:
 – Paper with design, implementation, and results
 (max 10 pages IEEE format)
 – Code, traces, etc. documented!
 – Presentation of results (mandatory for PhD students @ UiO)

• Important: you have to learn and practise collaboration!
 → tools
Lab Assignments

• Each institution defines assignments that are of their strong interest
• In Oslo you can follow many of our lab assignments up with a Master thesis
• From each institution a supervisor will be responsible for the groups that work on their assignments
• Preliminaries before the real group work starts:
 – Light-weight introduction into project management and team work
 – Introduction into the available collaboration tools
 – Introduction into software that should be used for the particular tasks

Lab Assignments (cont.)

• Examples of previous lab assignments:
 – Studing multihoming on handheld devices
 – Investigation of adaptive bitrate streaming over HTTP
 – Investigating Energy Consumption and Quality of Context Detection for Mobile Phone
 – Proxy to duplicate RTP/UDP traffic
 – Implement the CacheCast protocol in the ns-3 network simulator
 – Image retargeting for handheld mobile devices
 – WebGL on Mobile Devices
 – Analysing the Impact of Internet Worm Attacks Using a Simulation Environment
Lab Assignments (cont.)

- Algorithm for assigning assignments:
 - List of all assignments will be published early February
 - There will be a list in which all students insert their preferences
 - We try to match as good as possible the indicated preferences
 - The group assignments will be published February 26th

- Workshop to boot strap joint work on September 21st
 - Students and supervisors from University of Mannheim come to Ifi
 - All Ifi students must join the meeting (start 10:15)
 - Goal:
 - Get to know each other
 - Brainstorm together with the supervisor
 - Make together a plan for further collaboration

Collaboration

- Tools:
 - Lecturnity: www.lecturnity.de
 - Collaboration tool from Univ. Of Mannheim
- Take up immediately contact with your team
- Which communication channels you want to use
 - White board
 - Chat room
 - E-mail
 - Netmeeting
 - Instant messanger
 -
- When do you want to communicate
 - Regular schedules help, e.g., meet in a chat room every Tuesday and Thursday at 14:00
Collaboration (cont.)

• Preparation:
 – Reading background information
 – Analyze the problem
 – Get familiar with the programming environment and tools
• Design:
 – Brainstorm and develop different ideas for solving the problem
 – Describe their design
 – Discuss and compare their pros & cons
 – Select one (or more)
• Implementation:
 – Split up the implementation task
 – Identify core data structures and interfaces
 – Take care of versioning
• Evaluation:
 – Discuss what should be evaluated, why, and how
 – Analyze the results
 – How to best present the results

Collaboration (cont.)

• Who is doing what when?
 – Team: Make a rough time plan (e.g., start with the tasks on the previous page)
 – Each member: Identify the times you can (and cannot) spend time for the assignment
 – Each member: Select those tasks you would like to do and which match your personal schedule
 – Team: Take care that there is for all tasks at least one responsible (OBS: preparation cannot be entirely partitioned)
 – Team: Compare each week current achievements vs. time plan, estimate the impact of delays, adjust effort and task distribution, update the time plan
• In the last section of the paper each team must identify who has contributed to what!
Great Solutions

• Examples of publications based on lab assignments:
 – If you consider this for your results involve your supervisor!

Marks and Grading

• The following marks are used:
 – Oslo: A,B,C,D, .. E, F
 • A – E is passed
 • F is failed
 – Mannheim: 1,2,3,4, .. 5
 • 1-4 is passed
 • 5 is failed
Marks and Grading (cont.)

- How to perform grading in Oslo (Ifi/UiO):
 - Final mark is based on two parts:
 - 50% weight for oral examination of the theoretical part, i.e., the lectures
 - We provide for each lecture literature in addition to the transparencies
 - Not all lectures are part of the syllabus that will be subject to examination
 - 50% weight for lab assignment and report
 - For PhD students a mandatory presentation
- How to agree on a mark for international groups:
 - for each lab assignment there is one supervisor
 - supervisor identifies how much % has been solved (and agrees with external examiner on this for Oslo students)
 - the % is mapped to the local marking system
- Important: marks and grading are compliant to the local rules!

Summary

- Why a distributed course?
- What do we teach?
- Which lab assignments?
- How do we collaborate?
- How is the course graded?