

Software and hardware support for
Network Virtualization

Knut Omang
Ifi/Oracle

19 Oct, 2015

Motivation
● Goal: Introduction to challenges in providing fast networking to virtual

machines
Prerequisites:

● What is virtualization?
● Understand interplay between

– software ideas/application abstractions
– hardware evolution
– compatibility requirements!

● Understand some of the recent hardware additions to CPUs and chipsets
● Understanding some of the underlying APIs we virtualize upon!

Overview
● Introduction to virtualization (Virtual machines)
● Aspects of network virtualization:

– Virtual network infrastructure, interfaces, adapters
● Network interface attach points (PCI, PCIe)
● Software emulation of a network interface
● Paravirtualized network interfaces
● Hardware support for sharing a network adapter (SR/IOV)
● Use cases, challenges, risks and tradeoffs

Virtualization
● Present an abstraction to the application (guest OS, user program..)
● About resource sharing, resource utilization

– Not new: ex. process, virtual memory - just taking it further..
– Virtual memory, virtual disk head, virtual CPU, virtual computer..

● As in virtual machines:
– Host operating system (often called hypervisor) sees whole computer
– Guest operating system only sees a partition of the real computer
– Protection and transparency
– Flexible use of machine resources

Virtualization of resources
● Motivated from the programming side (software)
● Implementation in software faces problems:

– performance
– security

● Hardware: How can we support it better?
● Think about basic OS abstractions..
● Ongoing driver for hardware development
● Applies to network side as well

Virtualization →isolation
Popek and Goldberg,1974:

● Sensitive instructions: Instructions that for protection reasons must be
executed in kernel mode

● Privileged instructions: Instructions that causes a trap

A machine is virtualizable iff the set of sensitive instructions is a subset of
the set of privileged instructions.

Virtualization before ca.1995
IBM CP/CMS -> VM/370, 1979

● Hardware support: Traps sensitive instructions
● Architecture still in use for IBM “mainframes”

● Largely ignored by others
– Taken up by Sun and HP in 1990's
– x86-world? Difficult because:

● Some sensitive instructions ignored in user mode!
● Some sensitive instructions allowed from user mode!

Virtualization in the (limited) x86
Problems:

● Performance:
– I/O
– Page faults
– Interrupts (when?)
– Host resource usage

● Avoidig 'leaking' instructions
– Pentium allows instruction that makes it possible to determine if it is executed

in kernel mode
– Might confuse OS..

Virtualization in the (limited) x86
Solutions:

● Interpretation (emulating the instruction set)
– Performance penalty of factor 5-10
– Benefit: May emulate any type of CPU

● “Full” virtualization
– Privileged instructions in guest OS'es rewritten by virtualization software (binary

translation)
– Stanford DISCO --> VmWare workstation

● Did not require source code of OS!

● Paravirtualization
– Replacing parts of the guest operating system with custom code for virtualization

Xen PV (Xen Paravirtualization)
● Uses x86 privilege levels differently:

– Rings: 0, 1, 2, 3 (highest to lowest privilege)
– Normally OS executes in ring 0 and applications execute in ring 3
– With Xen

● 0 – Hypervisor
● 1 – Guest OS
● 2 – unused
● 3 – Applications

– Guest OS modified for privileged instructions
● Still used for dom0 (privileged guest mode) in Xen
● VMWare ESX: similar approach

Initial hw support for virtualization on x86_64
● VT-x(Intel) and SVM(AMD):

– Inspired by VM/370
– Set of operations that trap

● controlled by bitmap managed by host OS/hypervisor

● Present in most (all?) newer 64 bit versions of AMD/Intel processors
– must sometimes be enabled in BIOS

● Delivers isolation according to Popek & Goldberg
● Effectively privileged mode, guest privileged mode and user mode..
● On linux: cat /proc/cpuinfo | egrep 'svm|vmx'

Intel x86_64 page tables

Shadow page tables
● Guest page table is GVA ->GPA
● Hypervisor maintains shadow page tables

– Trap all changes to guest page tables
– Sync shadow page table: GVA → HPA

● Very expensive to keep these tables in sync:
– lots of traps!
– memory overhead of extra page tables!

Shadow page tables

http://www.anandtech.com/show/2480/10

Extended/nested page tables
● Problem: Very expensive virtual machine context switches!
● OSes expect to “own” address space

– Need extra level of page tables
● Two virtual machines could have the same guest physical addresses

– but these “physical pages” were pointing to different host physical pages
– All state about pages must be flushed upon machine switch (VM exit)

● Hardware solution:
– Intel: Extended page tables (ept + vpid)
– AMD: Nested page tables (npt)
– Introduces hardware support to distinguish guest physical addresses from different machines
– Extra page table: GPA → HPA

Extended page tables

Network virtualization: 1) Virtual infrastructure
Ethernet as example:

● Hardware: broadcast → point to point
● HUBs to switches
● VLAN: Sharing physical links
● Wireless/mobile..
● Speed ↔ technology
● Pure software: virtual switches and links

Ethernet...

Ethernet
● CSMA/CD (Carrier Sense Multiple Access w/Collision Detection)

● Half-duplex, serial, single wire pair
● Designed for optimistic, unreliable broadcast w/repeaters
● Today:

– somewhat related usage on Wifi
– But: Mostly reliable point-to-point w/switches (parallel) full-duplex

● Speed: 10,100,1000Mb/s, 10,40,100Gb/s,…?
● Software aspects of Ethernet as success factor:

– Extensible, flexible protocol
– high penetration...

Virtual Ethernet?

VLAN (IEEE 802.1Q):
● Extra VLAN ID field in Ethernet packet
● Allows several logical networks to use same medium
● “Smart” switches and routers define who will see which logical

streams of packets
● Benefits: Flexibility, saves expensive wire resources, network capacity
● Drawbacks? Complexity, security issues, requires switch support

Ethernet and machine virtualization?
● Virtual ethernet switches

– to be able to route packets to a virtual machine
● Virtual packet forwarding

– logical transport links between VMs within a host
● Host virtual ethernet

– tap, bonding devices
● Virtual ethernet devices in virtual machines

– emulated (OS sees a “real” device)
– paravirtualized (custom interface with hypervisor)

● In common: All operates on Ethernet packets
– benefits? drawbacks?

Network interface attach points (Linux)
Ethernet not the only network interface, abstraction layer:

● serial ports
● parallel ports
● tun (IP packets)
● IPC sockets
● USB
● Firewire
● Bluetooth
● RDMA devices (later)

Virtual ethernet support within a Linux host
● Virtual switches (bridges)

– brctl
● Virtual ethernet interfaces (tap devices)

– tunctl
● Packet filtering

– ebtables
● Tunneling

Virtual IP network support on Linux
● Tun devices

– tunctl tunN | -n dev
● Packet filtering

– iptables, ip route + NAT
● Queuing and manipulation of packet queues

– tc (traffic control)

The system I/O “bus”

● Before the PC: Proprietary, incompatible → expensive!
● IBM PC: AT bus - tried MicroChannel Architecture
● ISA (Industry Standard Architecture) bus!

– “clone” manufacturer effort
– parallel broadcast medium, 8 or 16 bit at a time
– Hardware design: slot design, pinout standardized w/extensions

● 486: ISA bus too slow for video req → VESA local bus: 32 bit isa
● Pentium: PCI + ISA for bw comp

PCI (Peripheral Component Interconnect)
● DMA (Direct Memory Access) support for devices
● New, more compact physical design
● Standardized, extensible software interface!
● 3 Address space types:

– Config space
– I/O ports (ISA compat++)
– Memory mapped I/O (MMIO)

● Config space has standardized layout, standardized semantics

ISA vs PCI

Why do we care about details of an obsolete I/O bus?

● Common software implementations of virtualization emulates a PCI based
system architecture

● Most OSes automatically recognize and are able to tell something about
PCI devices

● Some OSes would probably not even boot if no PCI host bridge was
detected!

● It is basically a good API to base a virtual device on!
● PCI Express is an extension of PCI

– from a software perspective! (remember old and new Ethernet? ;-))

PCI config space

PCI config space, Pentium emulation

PCI BAR (Base Address Register) spaces
● OS writes 0xfffffff to determine size/validity - size is 2^n
● Only the bits needed to set an aligned address are writable
● OS can deduce size - writes back desired PCI address.
● Device listens to PCI requests to range from BAR address + BAR size.
● Up to 6 32 bits regions
● Up to 3 64 bits regions

– Registers used in pair
● BAR type information in read only lower bit

