Data Stream Management Systems

Vera Goebel
Department of Informatics, University of Oslo

INF5100, Fall 2017

• What are DSMSs? (terms)
• Why do we need DSMSs? (applications)
• Concepts: Data Model, Query Processing, Windows
• Example: Medical Data Analysis with Esper
Handle Data Streams in DBS?

Traditional DBS

SQL Query

<table>
<thead>
<tr>
<th>Query Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Memory</td>
</tr>
<tr>
<td>Disk</td>
</tr>
</tbody>
</table>

DSMS

Register CQs

<table>
<thead>
<tr>
<th>Query Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Memory</td>
</tr>
<tr>
<td>Data Stream(s)</td>
</tr>
<tr>
<td>Scratch store (main memory or disk)</td>
</tr>
<tr>
<td>Archive Stored relations</td>
</tr>
</tbody>
</table>

Result (stored)
Data Management: Comparison - DBS versus DSMS

<table>
<thead>
<tr>
<th>Database Systems (DBS)</th>
<th>DSMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Persistent data (relations) (relatively static, stored)</td>
<td>• Read-only (append-only) data</td>
</tr>
<tr>
<td>• Transactions (ACID properties)</td>
<td>• No transaction management</td>
</tr>
<tr>
<td>• One-time queries</td>
<td>• Transient streams (on-line analysis)</td>
</tr>
<tr>
<td>• Random access</td>
<td>• Continuous queries (CQs)</td>
</tr>
<tr>
<td>• “Unbounded” disk store</td>
<td>• Sequential access</td>
</tr>
<tr>
<td>• Only current state matters</td>
<td>• Bounded main memory</td>
</tr>
<tr>
<td>• No real-time services</td>
<td>• Historical data is important</td>
</tr>
<tr>
<td>• Relatively low update rate</td>
<td>• Real-time requirements</td>
</tr>
<tr>
<td>• Data at any granularity</td>
<td>• Possibly multi-GB arrival rate</td>
</tr>
<tr>
<td>• Assume precise data</td>
<td>• Data at fine granularity</td>
</tr>
<tr>
<td>• Access plan determined by query processor, physical DB design</td>
<td>• Data stale/imprecise</td>
</tr>
<tr>
<td></td>
<td>• Unpredictable/variable data arrival and characteristics</td>
</tr>
</tbody>
</table>

Adapted from [Motawani: PODS tutorial]
DSMS Applications

• Sensor Networks:
 – Monitoring of sensor data from many sources, complex filtering, activation of alarms, aggregation and joins over single or multiple streams

• Network Traffic Analysis:
 – Analyzing Internet traffic in near real-time to compute traffic statistics and detect critical conditions

• Financial Tickers:
 – On-line analysis of stock prices, discover correlations, identify trends

• On-line auctions

• Transaction Log Analysis, e.g., Web, telephone calls, …
Motivation for DSMS

• **Large amounts of interesting data:**
 – deploy transactional data observation points, e.g.,
 • AT&T long-distance: ~300M call tuples/day
 • AT&T IP backbone: ~10B IP flows/day
 – generate automated, highly detailed measurements
 • NOAA: satellite-based measurement of earth geodetics
 • Sensor networks: huge number of measurement points

• **Near real-time queries/analyses**
 – ISPs: controlling the service level
 – NOAA: tornado detection using weather radar data
Motivation for DSMS (cont.)

- Performance of disks:

<table>
<thead>
<tr>
<th></th>
<th>1987</th>
<th>2004</th>
<th>2016 HD (SSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Performance</td>
<td>1 MIPS</td>
<td>2 Mill. MIPS</td>
<td>1-n Giga/Peta/Exa MIPS</td>
</tr>
<tr>
<td>Memory Size</td>
<td>16 Kbytes</td>
<td>32 Gbytes</td>
<td>1-n TBytes</td>
</tr>
<tr>
<td>Memory Performance</td>
<td>100 usec</td>
<td>2 nsec</td>
<td>2 nsec</td>
</tr>
<tr>
<td>Disc Drive Capacity</td>
<td>20 Mbytes</td>
<td>300 Gbytes</td>
<td>10-16 TBytes</td>
</tr>
<tr>
<td>Disc Drive Performance</td>
<td>60 msec</td>
<td>5.3 msec</td>
<td>2-5 msec HD (SSD: 25-250 usec read, 2 msec write)</td>
</tr>
</tbody>
</table>
Motivation for DSMS (cont.)

• Take-away points:
 – Large amounts of raw data
 – Analysis needed as fast as possible
 – Data feed problem
Application Requirements

- **Data model and query semantics**: order- and time-based operations
 - Selection
 - Nested aggregation
 - Multiplexing and demultiplexing
 - Frequent item queries
 - Joins
 - Windowed queries

- **Query processing**:
 - Streaming query plans must use non-blocking operators
 - Only single-pass algorithms over data streams

- **Data reduction**: approximate summary structures
 - Synopses, digests => no exact answers

- **Real-time reactions** for monitoring applications => active mechanisms

- **Long-running queries**: variable system conditions

- **Scalability**: shared execution of many continuous queries, monitoring multiple streams

- **Stream Mining**
Generic DSMS Architecture

[Golab & Özsu 2003]
DSMS: 3-Level Architecture

DBS
- Data feeds to database can also be treated as data streams
- Resource (memory, disk, per-tuple computation) rich
- Useful to audit query results of DSMS
- Supports sophisticated query processing, analyses

DSMS
- DSMS at multiple observation points, (voluminous) streams-in, (data reduced) streams-out
- Resource (memory, per tuple computation) limited, esp. at low-level
- Reasonably complex, near real-time, query processing
- Identify what data to populate in DB
Data Models

- **Real-time data stream**: sequence of data items that arrive in some order and may be seen only once.
- **Stream items**: like relational tuples
 - relation-based models, e.g., STREAM, TelegraphCQ; or instantiations of objects
 - object-based models, e.g., COUGAR, Tribeca
- **Window models**:
 - Direction of movement of the endpoints: fixed window, sliding window, landmark window
 - Physical / time-based windows versus logical / count-based windows
 - Update interval: eager (update for each new arriving tuple) versus lazy (batch processing -> jumping window), non-overlapping tumbling windows
Timestamps

• Explicit
 – Injected by data source
 – Models real-world event represented by tuple
 – Tuples may be out-of-order, but if near-ordered can reorder with small buffers

• Implicit
 – Introduced as special field by DSMS
 – Arrival time in system
 – Enables order-based querying and sliding windows

• Issues
 – Distributed streams?
 – Composite tuples created by DSMS?
Time

• Easiest: global system clock
 – Stream elements and relation updates timestamped on entry to system

• Application-defined time
 – Streams and relation updates contain application timestamps, may be out of order
 – Application generates “heartbeat”
 • Or deduce heartbeat from parameters: stream skew, scrambling, latency, and clock progress
 – Query results in application time
Queries - I

- DBS: one-time (transient) queries
- DSMS: continuous (persistent) queries
 - Support persistent and transient queries
 - Predefined and ad hoc queries (CQs)
 - Examples (persistent CQs):
 - Tapestry: content-based email, news filtering
 - OpenCQ, NiagaraCQ: monitor web sites
 - Chronicle: incremental view maintenance
- Unbounded memory requirements
- Blocking operators: window techniques
- Queries referencing past data
Queries - II

• DBS: (mostly) exact query answer
• DSMS: (mostly) approximate query answer
 – Approximate query answers have been studied:
 • Synopsis construction: histograms, sampling, sketches
 • Approximating query answers: using synopsis structures
 • Approximate joins: using windows to limit scope
 • Approximate aggregates: using synopsis structures

• Batch processing
• Data reduction: sampling, synopses, sketches, wavelets, histograms, …
One-pass Query Evaluation

• DBS:
 – Arbitrary data access
 – One/few pass algorithms have been studied:
 • Limited memory selection/sorting: \(n \)-pass quantiles
 • Tertiary memory databases: reordering execution
 • Complex aggregates: bounding number of passes

• DSMS:
 – Per-element processing: single pass to reduce drops
 – Block processing: multiple passes to optimize I/O cost
Query Plan

- DBS: fixed query plans optimized at beginning
- DSMS: adaptive query operators
 - Adaptive plans: Adaptive query plans have been studied:
 - Query scrambling: wide-area data access
 - Eddies: volatile, unpredictable environments
Query Languages & Processing

- Stream query language issues (compositionality, windows)
- SQL-like proposals suitably extended for a stream environment:
 - Composable SQL operators
 - Queries reference relations or streams
 - Queries produce relations or streams
- Query operators (selection/projection, join, aggregation)
- Examples:
 - GSQL (Gigascope)
 - CQL (STREAM)
- Optimization objectives
- Multi-query execution
Query Languages

3 querying paradigms for streaming data:

1. **Relation-based**: SQL-like syntax and enhanced support for windows and ordering, e.g., Esper, CQL (STREAM), StreaQuel (TelegraphCQ), AQuery, GigaScope

2. **Object-based**: object-oriented stream modeling, classify stream elements according to type hierarchy, e.g., Tribeca, or model the sources as ADTs, e.g., COUGAR

3. **Procedural**: users specify the data flow, e.g., Aurora, users construct query plans via a graphical interface

(1) and (2) are declarative query languages, currently, the relation-based paradigm is mostly used.
Windows

• Mechanism for extracting a finite relation from an infinite stream
• Various window proposals for restricting operator scope
 – Windows based on ordering attributes (e.g., time)
 – Windows based on tuple counts
 – Windows based on explicit markers (e.g., punctuations)
 – Variants (e.g., partitioning tuples in a window)
Ordering Attribute Based Windows

• Assumes the existence of an attribute that defines the order of stream elements/tuples (e.g., time)
• Let T be the window length (size) expressed in units of the ordering attribute (e.g., T may be a time window)
• Various possibilities exist:
Tuple Count Based Windows

- Window of size N tuples (sliding, shifting) over the stream
- Problematic with non-unique time stamps associated with tuples
- Ties broken arbitrarily may lead to non-deterministic output
Punctuation Based Windows

• Application inserted “end-of-processing” markers
 – Each data item identifies “beginning-of-processing”
• Enables data item-dependent variable length windows
 – e.g., a stream of auctions
• Similar utility in query processing
 – Limit the scope of query operators relative to the stream
Sample Stream

Traffic (sourceIP -- source IP address
sourcePort -- port number on source
destIP -- destination IP address
destPort -- port number on destination
length -- length in bytes
time -- time stamp
);
Selections, Projections

- Selections, (duplicate preserving) projections are straightforward
 - Local, per-element operators
 - Duplicate eliminating projection is like grouping
- Projection needs to include ordering attribute
 - No restriction for position ordered streams

```sql
SELECT sourceIP, time
FROM Traffic
WHERE length > 512
```
Join Operators

• General case of join operators problematic on streams
 – May need to join arbitrarily far apart stream tuples
 – Equijoin on stream ordering attributes is tractable

• Majority of work focuses on joins between streams with windows specified on each stream

```sql
SELECT A.sourceIP, B.sourceIP
FROM Traffic1 A [window T1], Traffic2 B [window T2]
WHERE A.destIP = B.destIP
```
Aggregation

- **General form:**
 - `select G, F1 from S where P group by G`
 - Having `F2 op ϑ`
 - `G`: grouping attributes, `F1,F2`: aggregate expressions

- **Aggregate expressions:**
 - **distributive:** sum, count, min, max
 - **algebraic:** avg
 - **holistic:** count-distinct, median
Aggregation & Approximation

• When aggregates cannot be computed exactly in limited storage, approximation may be possible and acceptable

• Examples:
 – select G, median(A) from S group by G
 – select G, count(distinct A) from S group by G
 – select G, count(*) from S group by G having count(*) > f|S|

• Data reduction: use summary structures
 – samples, histograms, sketches …

• Focus of different tutorial
Sampling

- A small random sample S of the data often well-represents all the data
 - Example: select \textit{agg} from R where R.e is odd (n=12)

 \begin{itemize}
 \item Data stream: 9 3 5 2 7 1 6 5 8 4 9 1
 \item Sample S: 9 5 1 8
 \end{itemize}

 - If \textit{agg} is avg, return average of odd elements in S
 \textbf{answer: 5}

 - If \textit{agg} is count, return average over all elements \(e \) in S of
 \begin{itemize}
 \item \(n \) if \(e \) is odd
 \item 0 if \(e \) is even
 \end{itemize}
 \textbf{answer: 12*3/4 =9} \textit{Unbiased!}
Histograms

• Histograms approximate the frequency distribution of element values in a stream

• A histogram (typically) consists of
 – A partitioning of element domain values into buckets
 – A count C_B per bucket B (of the number of elements in B)

• Long history of use for selectivity estimation within a query optimizer
Wavelets

- For hierarchical decomposition of functions/signals
- Haar wavelets
 - Simplest wavelet basis => Recursive pairwise averaging and differencing at different resolutions

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>----</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0, -1, -1, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[-1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]
Query Optimization

- DBS: table based cardinalities used in query optimization
 => Problematic in a streaming environment
- Cost metrics and statistics: accuracy and reporting delay vs.
 memory usage, output rate, power usage
- Query optimization: query rewriting to minimize cost metric, adaptive
 query plans, due to changing processing time of operators,
 selectivity of predicates, and stream arrival rates
- Query optimization techniques
 - stream rate based
 - resource based
 - QoS based
- Continuously adaptive optimization
- Possibility that objectives cannot be met:
 - resource constraints
 - bursty arrivals under limited processing capability
Disorder in Data Streams

• Many queries over data streams rely on some kind of order on the input data items
 – Can often use more efficient operator implementations if the input is sorted on “interesting attributes” (e.g. aggregates)

• What causes disorder in streams?
 – Items from the same source may take different routes
 – Many sources with varying delays
 – May have been sorted on different attribute

• Sorting a stream may be undesirable

• May be more than one possible interesting order over a stream
 – For example, data items may have creation time and arrival time
 – Sorted on arrival time, but creation time also interesting
Punctuations

• Punctuations embedded in stream denote end of subset of data
 – Unblock blocking operators
 – Reduces state required by stateful operators
• New operator: Punctuate
 – Has special knowledge regarding the input stream
 • timer-based, k-constraints, communication with stream source
 – Emits punctuations in source schema based on special knowledge
• Punctuations can help in two ways:
 • Maintain order – Punctuations unblock sort
 – Similar to approach in Gigascope
 – Order-preserving operators include sort behavior for punctuations
 • Allow disorder – Punctuations define the end of subsets
 – Operators use punctuations, not order, to output results
 – Reduces tuple latency
Query Processing - I

- Continuous query plans:
 - push-based approaches - data is pushed to the DSMS by the source(s)
 - trad.DBS approaches are pull-based, queue problems (overflows)
 - open problems: redesign disk-based data structures and indices

- Processing multiple continuous queries:
 - sharing query plans
 - indexing query predicates

- Distributed query processing:
 - multiple data streams arriving from remote sources
 => distributed optimization strategies
Query Processing - II

(1) Non-blocking operators - 3 techniques for unblocking stream operators:
 • windowing
 • incremental evaluation
 • exploiting stream constraints (punctuations)

(2) Approximate algorithms – if (1) does not work, compact stream summaries may be stored and approximate queries may be run over the summaries
 -> Trade-off: accuracy vs. amount of memory
 Methods of generating synopses: counting methods, hashing methods, sampling methods, sketches, wavelet transformations

(3) Sliding window algorithms:
 • windowed sampling
 • symmetric hash join

(4) On-line data stream mining (single pass): computing stream signatures, decision trees, forecasting, k-medians clustering, nearest neighbour queries, regression analysis, similarity detection, pattern matching
Approximate Query Answering Methods

- Sliding windows
 - Only over sliding windows of *recent stream data*
 - Approximation but often more desirable in applications

- Batched processing, sampling and synopses
 - **Batched** if update is fast but computing is slow
 - Compute periodically, not very timely
 - **Sampling** if update is slow but computing is fast
 - Compute using sample data, but not good for joins, etc.
 - **Synopsis** data structures
 - Maintain a small *synopsis* or *sketch* of data
 - Good for querying historical data

- Blocking operators, e.g., sorting, avg, min, etc.
 - **Blocking** if unable to produce the first output until seeing the entire input

[Han 2004]
Query Optimization

- DBS: table based cardinalities used in query optimization => Problematic in a streaming environment
- Cost metrics and statistics: accuracy and reporting delay vs. memory usage, output rate, power usage
- Query optimization: query rewriting to minimize cost metric, adaptive query plans, due to changing processing time of operators, selectivity of predicates, and stream arrival rates
- Query optimization techniques
 - stream rate based
 - resource based
 - QoS based
- Continuously adaptive optimization
- Possibility that objectives cannot be met:
 - resource constraints
 - bursty arrivals under limited processing capability
DBS Query Optimization

Statistics Manager:
Periodically collects statistics, e.g., table sizes, histograms

Estimated statistics

Optimizer:
Finds “best” query plan to process this query

Executor:
Runs chosen plan to completion

Which statistics are required

Query

Chosen query plan

[Babu 2004]
Optimizing Continuous Queries

- Continuous queries are long-running
- Stream characteristics can change over time
 - Data properties: Selectivities, correlations
 - Arrival properties: Bursts, delays
- System conditions can change over time

 ➔ Performance of a fixed plan can change significantly over time

 ➔ Adaptive processing: find best plan for current conditions

[Babu 2004]
DSMS Query Optimization

Optimizer: Finds "best" query plan to process this query

Which statistics are required

Profiler: Monitors current stream and system characteristics

Estimated statistics

Reoptimizer: Ensures that plan is efficient for current characteristics

Decisions to adapt

Combined in part for efficiency

Executor: Executes current plan

Query
Optimization Objectives

• Rate-based optimization:
 - Take into account the rates of the streams in the query evaluation tree during optimization
 - Rates can be known and/or estimated

• Maximize tuple output rate for a query
 - Instead of seeking the least cost plan, seek the plan with the highest tuple output rate
Load Shedding

• When input stream rate exceeds system capacity a stream manager can shed load (tuples)

• Load shedding affects queries and their answers

• Introducing load shedding in a data stream manager is a challenging problem

• Random and semantic load shedding
Multi-query Processing

• In traditional multi-query optimization:
 – sharing (of expressions, results, etc.) among queries can lead
 – to improved performance

• Similar issues arise when processing queries on streams:
 – sharing between select/project expressions
 – sharing between sliding window join expressions