
Meta-models and Grammars

Introduction, Compilers
Modelling & Meta-modelling

Examples
Meta-models vs. Grammars

Summary

Prof. Andreas Prinz

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 1

Compilers

Abstract Syntax
Meta-model

MOF-structure

Graphical Editor Parser Text editor

Code generationTest case derivation Proofs

Exchange Format
(XMI, ASN.1)Static checks (OCL)

• Solved: many input/output formats
• Graphical / Domain specific languages, many

transformations
• Internal representation: Meta-model vs. Abstract

syntax

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 2

Importance of internal structure

Model

Representation

generated
Model

generated
code

checking Tools
(type,consistency)

transformation
tool

generated
tool

(checking model)

(xml check descr.)

(access. checker)

(checks compiler)

(code model)

(python code)

(html web page)

(web page model)

(access. checker)

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 3

Aspects of Compilers/Languages
• Language structure: What are the

concepts? How are they related?
• Static semantics: additional conditions,

what is allowed?
• Representation: How are programs

written? -> graphical vs. textual
• Dynamic semantics: What do the

programs mean? How to generate code
for them?

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 4

Aspects of a language & tools

Structure

Constraints

BehaviourRepresentation

graphical

textual

run

transform

Checker

Exchange
format

Transformator

Simulator

Graphical
editor

Textual
editor

Parser

Access
interface

Repository

• XMF Mosaic
from Xactium as
example tool set.

• Idea: The meta-
model IS the
tool.

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 5

Aspects for SDL and UML

Structure
formal EBNF

Constraints
formal
PC1

Behaviour
formal ASM

Representation
informal EBNF

graphical

textual

run

transform Structure
formal meta-model

Constraints
formal
OCL

Behaviour
informal

Representation
informal

graphical

textual

run

transform

SDL UML

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 6

What is a Model?
• A model is an abstraction of a (part of a) system.

– one model describes several systems, one system can have
several models

– simplified view of a system with respect to criteria
– can answer questions about the system if related to the view
– needs a representation, e.g. using a modelling language

• Models on different abstraction levels
– Models of the real Bits: Assembler
– Models of the Control Flow: Prog. Lang.
– Models of data storage: Database descriptions
– Models of access: Interface languages

• What is the best model of a cat? It is a cat. But it
has to be the same cat!

• A model has aspects like a language.

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 7

What are Meta-Models?
• A description of a class of models
• Models / high-level descriptions of the

modelling language
– narrow view: structure of the modelling

language
– wider view: all important aspects of the

language, i.e. structure, presentation, static
and dynamic semantics

• Meta-models (languages) can have
several aspects.

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 8

Language support MDA and Eclipse

Structure
MOF

Constraints
OCL

BehaviourRepresentation
HUGN

HUTN

Action

QVT

MDA Eclipse (oaw)

Structure
EMF

Constraints
OCL’

BehaviourRepresentation
GEF/GMF

Xtext

Xtend
Xpand

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 9

A meta-modelling architecture
OMG Level Examples Grammar

example
OCL
example

3 = meta
meta model

MOF EBNF MOF

2 = meta
model

UML MM Java
grammar

OCL
language

1 = model UML Model a program a formula
0 =
instances

real objects A run a truth
value

«component»
MOF

«component»
UML Metamodel

«component»
UML Model

«component»
User Data

M3

M2

M1

M0

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 10

:Person

name : String
isAbstract:Boolean

Class

Property
*

name : String
isAbstract:Boolean

name:String

name =“Class”
isAbstract =false

Class:Class

name : String
isAbstract:Boolean

Person

owned-
Attribute

Class

M0

M1

M2

M3

Instances on several levels

name =“Class”
isAbstract =false

Class:Class

:Property :Property
name=“name”name =“isAbstract”

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 11

Simple sample structure
Grammar

1..*

ProductionRule

NonTerminal

TermSequence

Term

Terminal Repetition
canBeEmpty: Boolean

right

1..*
left {ordered}

Optionality

Alternative

1..*

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 12

Simple sample constraints
context = Repetition
inv not self.canBeEmpty implies

self.exists(TermSequence)

context = NonTerminal
inv theGrammar.ProductionRule.exists

(p|p.name = self.name)

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 13

Simple sample text syntax
Grammar : {rules=ProductionRule}*;
ProductionRule : left:NonTerminal “::=”

right:TermSequence “;”;
NonTerminal : name=ID;
TermSequence : {term:Term}*;
Term : NonTerminal | Terminal | Optionality
Terminal : name=ID;
Optionality : “[” opt:TermSequence “]”

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 14

Simple sample graphics
Grammar

rules subsets diaContents
ProductionRule

NonTerminal
left

Diagram

Container

Rectangle

ProductionRule.contents = left –(::=)-> right

Connector

::=
shape=”::=”

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 15

Simple sample transformation
removeAlternatives:
ProductionRule(nt, Alternative(set a))
--> set ProductionRule(nt, a)

removeOptional:
Optional(x)
--> Alternative({x,Nothing})

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 16

Simple sample execution
Run(a:NonTerminal) =def
case a.rule of
NonTerminal: Run(a.rule)
Terminal: Print(a.rule.value)
Repetition:
choose n:Natural
foreach x:1..n Run(a.rule.sequence)

Optional:
choose b:Boolean
if b then Run(a.rule.term) else Skip

TermSequence:
foreach n:1..length(a.rule) Run(a.rule[i])

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 17

Problem area “runtime”
Meta-model

Model

Running Model

VM Model

MM Code

Code

Running Code

VM Code

I
N
T
E
R
F
A
C
E

Interpretation Compilation

• Instances of the language: code
• Instances of the program: data / objects

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 18

Problem area “representation”
• There are usually several representations for

the same meta-model instances.
• Tools and theory exist only for the case 1:1.
• A representation is a separate model that is

related to the meta-model.

Sig1: SignalDefinition

Sig2: SignalDefinition

signal Sig1, Sig2; signal Sig1;
signal Sig2;

signal Sig1;

signal Sig2;

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 19

Meta-models versus grammars
• Advantages of grammars

– Strong mathematical basis
– Tree-based
– Trees can be extended into general graphs
– Several advanced tools available
– Easily understandable

• Advantages of meta-models
– Direct representation of graphs (graphics!)
– Namespaces and relations between language elements (in

particular for language transformations and combinations)
– Object-oriented definition of oo languages
– More problem-oriented
– Reuse and inheritance
– Tools allow direct handling of models (repositories)
– Structuring possible (e.g. packages)

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 20

Grammars meta-models
1. Every symbol is represented with a class.
2. A rule with a single symbol on the rhs is represented

with an association between the class representing
the lhs and the rhs.

3. A rule with a composition on the rhs is represented
with an association for every sub-expression.

4. A rule with an alternative on the rhs is represented
with a generalization for every sub-expression.

5. A sub-expression consisting of just one symbol is
represented with the symbol’s class.

6. A sub-expression being a composition or an
alternative is represented with a new class with new
name. The composition is then handled like a rule.

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 21

Using the transformation for SDL
• Joachim Fischer, Michael Piefel, Markus Scheidgen:

A Metamodel for SDL-2000 in the Context of
Metamodelling ULF in Proceedings of SAM2006

• Introduction of abstract concepts
– General: namespace, namedElement, typedElement
– Specific: parametrizedElement, bodiedElement

• Introduction of relations
– Procedure name versus procedure definition

• Deletion of grammar artefacts
– Referencing: identifier, qualifier
– Names in general
– Superfluous structuring

Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 22

Conclusions / Summary
• Future languages will be defined using meta-models.

– definition of good meta-models is difficult
– need also agreement (standard)
– patterns for good models needed, maybe joint concepts

• Meta-models / Languages have several aspects:
structure, syntax, static and dynamic semantics

• Meta-model language definitions allow tool
generation
– Direct access to the models
– Easy exchange of representation or several of them
– Combination of tools handling the language
– Description of relations between languages

• Meta-models are the models to be used in model-
driven compiler technology.

	Meta-models and Grammars
	Compilers
	Importance of internal structure
	Aspects of Compilers/Languages
	Aspects of a language & tools
	Aspects for SDL and UML
	What is a Model?
	What are Meta-Models?
	Language support MDA and Eclipse
	A meta-modelling architecture
	Instances on several levels
	Simple sample structure
	Simple sample constraints
	Simple sample text syntax
	Simple sample graphics
	Simple sample transformation
	Simple sample execution
	Problem area “runtime”
	Problem area “representation”
	Meta-models versus grammars
	Grammars meta-models
	Using the transformation for SDL
	Conclusions / Summary

