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Compilers

Abstract Syntax
Meta-model

MOF-structure

Graphical Editor Parser Text editor

Code generationTest case derivation Proofs

Exchange Format
(XMI, ASN.1)Static checks (OCL)

• Solved: many input/output formats
• Graphical / Domain specific languages, many

transformations
• Internal representation: Meta-model vs. Abstract

syntax
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Importance of internal structure
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(html web page)
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Aspects of Compilers/Languages
• Language structure: What are the

concepts? How are they related?
• Static semantics: additional conditions, 

what is allowed?
• Representation: How are programs 

written? -> graphical vs. textual
• Dynamic semantics: What do the 

programs mean? How to generate code 
for them?
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Aspects of a language & tools

Structure

Constraints

BehaviourRepresentation

graphical

textual

run

transform

Checker

Exchange 
format

Transformator

Simulator

Graphical
editor

Textual
editor

Parser

Access 
interface

Repository

• XMF Mosaic 
from Xactium as 
example tool set.

• Idea: The meta-
model IS the
tool.
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Aspects for SDL and UML

Structure
formal EBNF

Constraints
formal 
PC1

Behaviour
formal ASM

Representation
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graphical
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run

transform Structure
formal meta-model

Constraints
formal 
OCL

Behaviour
informal

Representation
informal

graphical

textual

run

transform
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What is a Model?
• A model is an abstraction of a (part of a) system.

– one model describes several systems, one system can have 
several models

– simplified view of a system with respect to criteria
– can answer questions about the system if related to the view
– needs a representation, e.g. using a modelling language

• Models on different abstraction levels
– Models of the real Bits: Assembler
– Models of the Control Flow: Prog. Lang.
– Models of data storage: Database descriptions
– Models of access: Interface languages

• What is the best model of a cat? It is a cat.  But it 
has to be the same cat!

• A model has aspects like a language.
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What are Meta-Models?
• A description of a class of models
• Models / high-level descriptions of the 

modelling language
– narrow view: structure of the modelling 

language
– wider view: all important aspects of the 

language, i.e. structure, presentation, static 
and dynamic semantics

• Meta-models (languages) can have 
several aspects.
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Language support MDA and Eclipse

Structure
MOF

Constraints
OCL

BehaviourRepresentation
HUGN

HUTN

Action

QVT

MDA Eclipse (oaw)

Structure
EMF

Constraints
OCL’

BehaviourRepresentation
GEF/GMF

Xtext

---

Xtend
Xpand
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A meta-modelling architecture
OMG Level Examples Grammar 

example
OCL 
example

3 = meta 
meta model

MOF EBNF MOF

2 = meta 
model

UML MM Java 
grammar

OCL 
language

1 = model UML Model a program a formula
0 = 
instances

real objects A run a truth 
value

«component»
MOF

«component»
UML Metamodel

«component»
UML Model

«component»
User Data

M3

M2

M1

M0
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:Person

name : String
isAbstract:Boolean

Class

Property
*

name : String
isAbstract:Boolean

name:String

name =“Class”
isAbstract =false

Class:Class

name : String
isAbstract:Boolean

Person

owned-
Attribute

Class

M0

M1

M2

M3

Instances on several levels

name =“Class”
isAbstract =false

Class:Class

:Property :Property
name=“name”name     =“isAbstract”
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Simple sample structure
Grammar

1..*

ProductionRule

NonTerminal

TermSequence

Term

Terminal Repetition
canBeEmpty: Boolean

right

1..*
left {ordered}

Optionality

Alternative

1..*
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Simple sample constraints
context = Repetition
inv not self.canBeEmpty implies 

self.exists(TermSequence)

context = NonTerminal
inv theGrammar.ProductionRule.exists

(p|p.name = self.name) 
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Simple sample text syntax
Grammar : {rules=ProductionRule}*;
ProductionRule : left:NonTerminal “::=”

right:TermSequence “;”;
NonTerminal : name=ID;
TermSequence : {term:Term}*;
Term : NonTerminal | Terminal | Optionality
Terminal : name=ID;
Optionality : “[” opt:TermSequence “]”
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Simple sample graphics
Grammar

rules subsets diaContents
ProductionRule

NonTerminal
left

Diagram

Container

Rectangle

ProductionRule.contents = left –(::=)-> right

Connector

::=
shape=”::=”
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Simple sample transformation
removeAlternatives: 
ProductionRule(nt, Alternative(set a))
--> set ProductionRule(nt, a)

removeOptional:
Optional(x)
--> Alternative({x,Nothing})
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Simple sample execution
Run(a:NonTerminal) =def
case a.rule of
NonTerminal: Run(a.rule)
Terminal: Print(a.rule.value)
Repetition: 
choose n:Natural
foreach x:1..n Run(a.rule.sequence)

Optional: 
choose b:Boolean
if b then Run(a.rule.term) else Skip

TermSequence: 
foreach n:1..length(a.rule) Run(a.rule[i])
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Problem area “runtime”
Meta-model

Model

Running Model

VM Model

MM Code

Code

Running Code

VM Code

I 
N 
T 
E 
R 
F 
A 
C 
E

Interpretation Compilation

• Instances of the language: code
• Instances of the program: data / objects
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Problem area “representation”
• There are usually several representations for 

the same meta-model instances.
• Tools and theory exist only for the case 1:1.
• A representation is a separate model that is 

related to the meta-model.

Sig1: SignalDefinition

Sig2: SignalDefinition

signal Sig1, Sig2; signal Sig1;
signal Sig2;

signal Sig1;

signal Sig2;
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Meta-models versus grammars
• Advantages of grammars

– Strong mathematical basis
– Tree-based
– Trees can be extended into general graphs
– Several advanced tools available
– Easily understandable

• Advantages of meta-models
– Direct representation of graphs (graphics!)
– Namespaces and relations between language elements (in 

particular for language transformations and combinations)
– Object-oriented definition of oo languages
– More problem-oriented
– Reuse and inheritance
– Tools allow direct handling of models (repositories)
– Structuring possible (e.g. packages)
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Grammars meta-models
1. Every symbol is represented with a class.
2. A rule with a single symbol on the rhs is represented

with an association between the class representing
the lhs and the rhs.

3. A rule with a composition on the rhs is represented
with an association for every sub-expression.

4. A rule with an alternative on the rhs is represented
with a generalization for every sub-expression.

5. A sub-expression consisting of just one symbol is 
represented with the symbol’s class.

6. A sub-expression being a composition or an 
alternative is represented with a new class with new
name. The composition is then handled like a rule.



Thursday, 26 April 2007

Prepared by Andreas Prinz@AUC FACULTY OF ENGINEERING & SCIENCE

Slide 21

Using the transformation for SDL
• Joachim Fischer, Michael Piefel, Markus Scheidgen: 

A Metamodel for SDL-2000 in the Context of
Metamodelling ULF in Proceedings of SAM2006

• Introduction of abstract concepts
– General: namespace, namedElement, typedElement
– Specific: parametrizedElement, bodiedElement

• Introduction of relations
– Procedure name versus procedure definition

• Deletion of grammar artefacts
– Referencing: identifier, qualifier
– Names in general
– Superfluous structuring
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Conclusions / Summary
• Future languages will be defined using meta-models.

– definition of good meta-models is difficult
– need also agreement (standard)
– patterns for good models needed, maybe joint concepts

• Meta-models / Languages have several aspects: 
structure, syntax, static and dynamic semantics

• Meta-model language definitions allow tool 
generation
– Direct access to the models
– Easy exchange of representation or several of them
– Combination of tools handling the language
– Description of relations between languages

• Meta-models are the models to be used in model-
driven compiler technology.
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