
INF5150 Suggested solutions to exercises

1. As usual we let H denote the set of all well-formed traces, and ∅ denote the empty set.
\ is the symbol for set-minus, so S1\S2 denotes the set containing all elements that are in
S1 but not in S2.

To compute the traces of Ex 1, Ex2 and Ex3 we need the definitions of seq, refuse, veto
and assert:

Weak sequencing of trace sets:
s1≿ s2 denotes the set of all traces that may be constructed by selecting one trace t1 from
s1 and one trace t2 from s2 and combining them in such a way that for each lifeline, the
events from t1 comes before the events from t2.
Formally:
s1≿ s2 ≝ {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L : h↾l = h↾l⌒h↾2 }

Note: if s1 or s2 is empty then s1≿s2 is also empty
Weak sequencing of interaction obligations:
(p1,n1)≿(p2,n2) ≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))
seq:
[[d1 seq d2]] ≝ {o1≿o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}
refuse:
 [[refuse d]] ≝ {(∅,p∪n) ∣ (p,n)∈[[d]]}
veto:
[[veto d]] = {({<>},p∪n) ∣ (p∪n)∈[[d]]}
assert:
[[assert d]] ≝ {(p,n∪(ℋ\p)) ∣ (p,n)∈[[d]]}

Let t1 = <!e,?e,!f,?f> t2 = <!e,!f,?e,?f> t3 = <!e,?e>

[[Ex1]] = { ({<!e,?e>},∅) }≿{ (∅,{<!f,?f>}) }

= {({<!e,?e>}≿∅, (∅ ≿ ∅) ∪ (∅ ≿ {<!f,?f>})∪ ({<!e,?e>} ≿ {<!f,?f>}))}
= { (∅,{t1,t2 }) }

[[Ex2]] = { ({<!e,?e>},∅) }≿{ ({<>},{<!f,?f>}) }
= { ({t3},{t1, t2}) }

[[Ex3]] = { ({<!e,?e>},∅) }≿{ ({<!f,?f>}, ℋ\{<!f,?f>}) }
 = { ({t1,t2},n) }, where

n={t∈H | the first event on lifeline y is !e and the first event on lifeline x is ?e}\

{<!e,?e,!f,?f>,<!e,!f,?e,?f>}.
This means that the set n contains all traces where !e is the first event on lifeline y
and ?e is the first event on lifeline x, except from the traces <!e,?e,!f,?f> and
<!e,!f,?e,?f>.

To compute Ex4 we also need the definition of alt:
alt:
[[d1 alt d2]] ≝ {o1⊎o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}, where
(p1,n1) ⊎ (p2,n2) ≝ (p1∪p2, n1∪n2)

Let

t4 = <!a,?a,!b,?b>
t5 = <!a,!b,?a,?b>
t6 = <!c,?c >
t7 = <!a,?a,!b,?b,!e,?e>
t8 = <!a,!b,?a,?b,!e,?e>
t9 = <!a,?a,!b,?b,!e,?e,!f,?f>
t10 = <!a,!b,?a,?b,!e,?e,!f,?f >
t11 = <!a,?a,!b,?b,!e,!f,?e,?f>
t12 = <!a,!b,?a,?b,!e,!f,?e,?f >
t13 = <!c,?c,!e,?e>
t14 = <!c,?c,!e,?e,!f,?f>
t15 = <!c,?c,!e,!f,?e,?f>

[[Ex4]] = {({t4,t5},∅) ⊎ (∅,{t6})}
 = {({t4,t5},{t6})}

[[Ex5]] = [[Ex4 seq Ex2]]

= {({t4,t5}≿{t3}, ({t6}≿{t3})∪ ({t6}≿{t1,t2 }) ∪ ({t4,t5} ≿ {t1, t2 }))}
= {({t7,t8}, {t9,t10,t11,t12,t13,t14,t15})}

To compute Ex6 we need the definitions of xalt and constraints:
xalt:
[[d1 xalt d2]] ≝ [[d1]] ∪ [[d2]]
Constraints (i.e., guards):
[[constr(c)]] def = {({<check(σ)> | c(σ)}, {<check(σ)> | ¬c(σ)})}

[[Ex6]] ={({<chk(att=7),!a,?a>},{<chk(att≠7),!a,?a>})}∪

 {({<chk(att≠7),!b,?b,!c,?c>},{<chk(att=7), !b,?b,!c,?c >})}
 = { ({<chk(att=7),!a,?a>},{<chk(att≠7),!a,?a>}),

 ({<chk(att≠7),!b,?b,!c,?c>},{<chk(att=7), !b,?b,!c,?c >}) }

2.

We choose to use limited refinement. This ensures that no new interaction obligations
representing other outcomes are introduced.

3. Here is one suggestion:

Note that all traces from the “tooCheap” specification become negative in both
interaction obligations in the VendingMachine specification.

We choose to use general refinement, in order to leave open the possibility that the final
implementation also offers other drinks.

4. The mapping L is given by
L={p:PaymentHandler↦v:VendingMachine, d:drinkPreparator↦v:VendingMachine,

u:User↦u:User }
Notice that we have broken a UML principle since it is not clear from the diagrams that
d:drinkPreparator and p:PaymentHandler are parts of v:VendingMachine

	INF5150 Suggested solutions to exercises

