INF5150 Suggested solutions to exercises

1. As usual we let \mathcal{H} denote the set of all well-formed traces, and \varnothing denote the empty set. \backslash is the symbol for set-minus, so $\mathrm{S}_{1} \backslash \mathrm{~S}_{2}$ denotes the set containing all elements that are in S_{1} but not in S_{2}.

To compute the traces of Ex 1, Ex2 and Ex3 we need the definitions of seq, refuse, veto and assert:

Weak sequencing of trace sets:

$s 1 \succsim$ s2 denotes the set of all traces that may be constructed by selecting one trace $t 1$ from s1 and one trace t2 from s2 and combining them in such a way that for each lifeline, the events from t 1 comes before the events from t 2 .
Formally:

```
s1\gtrsim s2 \stackrel{\mathrm{ def }}{=}{\textrm{h}\in\mathcal{H}|\exists\textrm{h}1\in\textrm{s}1,\textrm{h}2\in\textrm{s}2:\foralll\in\mathcal{L}:\textrm{hll}=\textrm{h}l\hhl2}
```

Note: if s1 or s2 is empty then s1 \succsim s2 is also empty
Weak sequencing of interaction obligations:
$(\mathrm{p} 1, \mathrm{n} 1) \succsim(\mathrm{p} 2, \mathrm{n} 2) \stackrel{\text { def }}{=}(\mathrm{p} 1 \succsim \mathrm{p} 2,(\mathrm{n} 1 \succsim \mathrm{p} 2) \cup(\mathrm{n} 1 \succsim \mathrm{n} 2) \cup(\mathrm{p} 1 \succsim \mathrm{n} 2))$
seq:
$[[d 1$ seq d2]] def $\{o 1 \succsim o 2 \mid o 1 \in[[d 1]] \wedge o 2 \in[[d 2]]\}$
refuse:
$[[$ refuse d $]] \stackrel{\text { def }}{=}\{(\varnothing, p \cup n) \mid(p, n) \in[[d]]\}$
veto:
$[[$ veto $d]]=\{(\{<>\}, p \cup n) \mid(p \cup n) \in[[d]]\}$
assert:
$[[$ assert d $]] \stackrel{\text { def }}{=}\{(\mathrm{p}, \mathrm{n} \cup(\mathcal{H} \backslash \mathrm{p})) \mid(\mathrm{p}, \mathrm{n}) \in[[\mathrm{d}]]\}$
Let $\mathrm{t} 1=<!\mathrm{e}, ? \mathrm{e},!\mathrm{f}, \mathrm{?f}>\quad \mathrm{t} 2=<!\mathrm{e},!\mathrm{f}, ? \mathrm{e}, \mathrm{?f}>\quad \mathrm{t} 3=<!\mathrm{e}, ? \mathrm{e}>$

$$
\begin{aligned}
{[[\mathrm{Ex} 1]] } & =\{(\{<!\mathrm{e}, ? \mathrm{e}>\}, \varnothing)\} \succsim\{(\varnothing,\{<!\mathrm{f}, ? \mathrm{f}>\})\} \\
& =\{(\{<\mathrm{e}, ? \mathrm{e}>\} \succsim \varnothing, \quad(\varnothing \succsim \varnothing) \cup(\varnothing \succsim\{<!\mathrm{f}, ? \mathrm{f}>\}) \cup(\{<!\mathrm{e}, ? \mathrm{e}>\} \succsim\{<!\mathrm{f}, ? \mathrm{f}>\}))\} \\
& =\{(\varnothing,\{\mathrm{t} 1, \mathrm{t} 2\})\} \\
{[[\mathrm{Ex} 2]] } & =\{(\{<!\mathrm{e}, ? \mathrm{e}>\}, \varnothing)\} \succsim\{(\{<>\},\{<!\mathrm{f}, ? \mathrm{f}>\})\} \\
& =\{(\{\mathrm{t} 3\},\{\mathrm{t} 1, \mathrm{t} 2\})\} \\
{[[\mathrm{Ex} 3]] } & =\{(\{<!\mathrm{e}, ? \mathrm{e}>\}, \varnothing)\} \succsim\{(\{<!\mathrm{f}, ? \mathrm{f}>\}, \mathcal{H} \backslash\{<!\mathrm{f}, ? \mathrm{f}>\})\} \\
& =\{(\{\mathrm{t} 1, \mathrm{t} 2\}, n)\}, \text { where } \\
& n=\{\mathrm{t} \in \mathcal{H} \mid \text { the first event on lifeline } \mathrm{y} \text { is }!\mathrm{e} \text { and the first event on lifeline } \mathrm{x} \text { is } ? \mathrm{e}\} \backslash
\end{aligned}
$$

$$
\{<!e, ? e,!f, ? f>,<!e,!f, ? e, ? f>\}
$$

This means that the set n contains all traces where !e is the first event on lifeline y and ?e is the first event on lifeline x , except from the traces $<!e, ? e,!f, ? f>$ and $<!e,!f, ? e, ? f>$.

To compute Ex4 we also need the definition of alt:
alt:
[[d1 alt d2]] $\stackrel{\text { def }}{=}\{01 \uplus o 2 \mid o 1 \in[[d 1]] \wedge o 2 \in[[d 2]]\}$, where
$(p 1, n 1) \uplus(p 2, n 2) \stackrel{\text { def }}{=}(p 1 \cup p 2, n 1 \cup n 2)$

Let

$$
\begin{aligned}
{[[\operatorname{Ex} 4]] } & =\{(\{t 4, \mathrm{t} 5\}, \varnothing) \uplus(\varnothing,\{\mathrm{t} 6\})\} \\
& =\{(\{t 4,55\},\{\mathrm{t} 6\})\}
\end{aligned}
$$

$$
[[\operatorname{Ex} 5]]=[[\text { Ex4 seq Ex2 }]]
$$

$$
=\{(\{\mathrm{t} 4, \mathrm{t} 5\} \succsim\{\mathrm{t} 3\},(\{\mathrm{t} 6\} \succsim\{\mathrm{t} 3\}) \cup(\{\mathrm{t} 6\} \succsim\{\mathrm{t} 1, \mathrm{t} 2\}) \cup(\{\mathrm{t} 4, \mathrm{t} 5\} \succsim\{\mathrm{t} 1, \mathrm{t} 2\}))\}
$$

$$
=\{(\{\mathrm{t} 7, \mathrm{t} 8\},\{\mathrm{t} 9, \mathrm{t} 10, \mathrm{t} 11, \mathrm{t} 12, \mathrm{t} 13, \mathrm{t} 14, \mathrm{t} 15\})\}
$$

To compute Ex6 we need the definitions of xalt and constraints:

xalt:

[[d1 xalt d2]] $\stackrel{\text { def }}{=}[[d 1]] \cup[[d 2]]$

Constraints (i.e., guards):

$[[$ constr $(c)]] \operatorname{def}=\{(\{<\operatorname{check}(\sigma)>\mid c(\sigma)\},\{<\operatorname{check}(\sigma)>\mid \neg c(\sigma)\})\}$

$$
\begin{aligned}
{[[\text { Ex6 }]]=} & \{(\{<\operatorname{chk}(\operatorname{att}=7),!a, ? a>\},\{<\operatorname{chk}(\operatorname{att} \neq 7),!a, ? a>\})\} \cup \\
& \{(\{<\operatorname{chk}(\operatorname{att} \neq 7),!b, ? b,!c, ? c>\},\{<\operatorname{chk}(a t t=7),!b, ? b,!c, ? c>\})\} \\
= & \{(\{<\operatorname{chk}(\operatorname{att}=7),!a, ? a>\},\{<\operatorname{chk}(\operatorname{att} \neq 7),!a, ? a>\}), \\
& (\{<\operatorname{chk}(\operatorname{att} \neq 7),!b, ? b,!c, ? c>\},\{<\operatorname{chk}(a t t=7),!b, ? b,!c, ? c>\})\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { t4 }=\text { <!a,?a,!b,?b> } \\
& \text { t5 = <!a,!b,?a,?b> } \\
& \text { t6 }=\text { <! } \mathrm{c}, \text { ? } \mathrm{c}> \\
& \text { t7 }=\quad \text { <!a,?a,!b,?b,!e,?e> } \\
& \text { t8 = <!a,!b,?a,?b,!e,?e> } \\
& \mathrm{t} 9=\quad \text { <!a,?a,!b,?b,!e,?e,!f,?f> } \\
& \text { t10 = <!a,!b,?a,?b,!e,?e,!f,?f > } \\
& \text { t11 = <!a,?a,!b,?b,!e,!f,?e,?f> } \\
& \mathrm{t} 12=\text { <!a,!b,?a,?b,!e,!f,?e,?f > } \\
& \text { t13 = <! c,?c,!e,?e> } \\
& \mathrm{t} 14=<!\text {, ?, },!\text { e,?e,!f,?f> } \\
& \text { t15 = <!c,?c,!e,!f,?e,?f> }
\end{aligned}
$$

2.

We choose to use limited refinement. This ensures that no new interaction obligations representing other outcomes are introduced.
3. Here is one suggestion:

Note that all traces from the "tooCheap" specification become negative in both interaction obligations in the VendingMachine specification.

We choose to use general refinement, in order to leave open the possibility that the final implementation also offers other drinks.
4. The mapping L is given by
$\mathrm{L}=\{\mathrm{p}:$ PaymentHandler $\mapsto \mathrm{v}:$ VendingMachine, $\mathrm{d}:$ drinkPreparator $\mapsto \mathrm{v}$:VendingMachine, u:User $\mapsto \mathrm{u}:$ User $\}$
Notice that we have broken a UML principle since it is not clear from the diagrams that d:drinkPreparator and p:PaymentHandler are parts of v:VendingMachine

