
INF5150 INFUIT Haugen / Stølen 1

IN
F 5150

The pragmatics of STAIRS

Paper by Ragnhild Kobro Runde, Øystein
Haugen and Ketil Stølen

September 25, 2009

INF5150 INFUIT Haugen / Stølen 2

IN
F 5150

Today’s topics

Semantic model of STAIRS
– weak sequencing

Explain the practical relevance of STAIRS
Illustrated by a running example
– A system for booking appointments used by e.g. dentists

Give guidelines on
– the use of STAIRS operators (pragmatics of creating interactions)

alt versus xalt
guards
specifying negative behaviour (refuse, veto, assert)
seq

– refinement (pragmatics of refining interactions)
The tutorial can be found on the syllabus/achievement page for
INF5150

INF5150 INFUIT Haugen / Stølen 3

IN
F 5150

Semantic model of STAIRS

Interaction
– positive behaviours
– negative behaviours

Described formally by traces
Trace = sequence of events

<!(hello, Alice, Bob), ?(hello, Alice, Bob), !(hello, Bob, Alice), ?(hello, Bob, Alice)>

Shorthand: <!h,?h,!h,?h>
Tip: Include transmitter and receiver to distinguish messages with the
same signal

transmitter receiversignal

MessageKind

Transmission Reception

INF5150 INFUIT Haugen / Stølen 4

IN
F 5150

Weak sequencing

Combine interaction fragments by seq
Definition of weak sequencing of trace sets:
s1≿s2 denotes the set of all traces that may be
constructed by selecting one trace t1 from s1 and one
trace t2 from s2 and combining them in such a way that for
each lifeline, the events from t1 comes before the events
from t2.
Note: if s1 or s2 is empty then s1≿s2 is also empty
Remember: if the message hello is sent from l1 to l2, then
the event !hello occurs on l1 and ?hello occurs on l2

INF5150 INFUIT Haugen / Stølen 5

IN
F 5150

Weak sequencing of trace sets

Alice

hello

goodbye

Bob

<!(h,A,B),?(h,A,B),!(g,A,B),?(g,A,B)>

<!(h,A,B),!(g,A,B),?(h,A,B),?(g,A,B)>

<!(h,A,B),?(h,A,B)> ≳

=

<!(g,A,B),?(g,A,B)>

s1 s2

Red events occur on Alice,
blue events on Bob

s1 ≳ s2 is the set of
positive traces for the

diagram

s1

s2

INF5150 INFUIT Haugen / Stølen 6

IN
F 5150

Weak sequencing of interaction obligations

(p1,n1)≿(p2,n2)≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))

Traces composed exclusively by positive traces become
positive
Traces composed with at least one negative trace
become negative

INF5150 INFUIT Haugen / Stølen 7

IN
F 5150

Formal semantics of seq

[[d1 seq d2]]≝ {o1≿o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}

seq is the implicit composition operator
oi is shorthand for (pi, ni)
Note: For better readability we give the binary versions of
the operators in this presentation. N-ary versions are
used in the paper.

INF5150 INFUIT Haugen / Stølen 8

IN
F 5150

The pragmatics of creating interactions

INF5150 INFUIT Haugen / Stølen 9

IN
F 5150

Example: an appointment system

A system for booking appointments used by e.g. dentists

Functionality:
– MakeAppointment: The client may ask for an appointment
– CancelAppointment: The client may cancel an appointment
– Payment: The system may send an invoice message asking the

client to pay for the previous or an unused appointment.

The interactions specifying the system will be developed
in a stepwise manner
Steps will be shown to be valid refinement steps

INF5150 INFUIT Haugen / Stølen 10

IN
F 5150

xalt vs alt (1): CancelAppointment

This specification has two
positive traces
Whether reception of
appointmentCancelled()
occurs before or after
sending of
appointmentSuggestion(...)
is not important
Underspecification due to
weak sequencing

INF5150 INFUIT Haugen / Stølen 11

IN
F 5150

xalt vs alt (2): MakeAppointment

May ask for either a
specific date or a specific
hour of the day (e.g. in the
lunch break)
The system is not
required to offer both
alternatives
Underspecification
expressed by the alt
operator

INF5150 INFUIT Haugen / Stølen 12

IN
F 5150

xalt vs alt (3): DecideAppTime

The system must be able
to handle both yes() and
no() as reply messages
from the client
This is not
underspecification
Therefore the alternatives
are expressed by the xalt
operator

INF5150 INFUIT Haugen / Stølen 13

IN
F 5150

xalt vs alt (4): CancelAppointment

The condition for
choosing errorMessage()
or
appointmentCancelled() is
not shown
Both alternatives should
be possible
The choice is made by the
system

INF5150 INFUIT Haugen / Stølen 14

IN
F 5150

xalt vs alt (5)

A third use of xalt: to specify inherent nondeterminism
– for example when specifying a coin toss

The crucial question when specifying alternatives: Do
these alternatives represent similar traces in the sense
that implementing only one is sufficient?
– if yes, use alt
– otherwise, use xalt

INF5150 INFUIT Haugen / Stølen 15

IN
F 5150

Formal semantics of alt and xalt

Alt combines interaction obligations:

[[d1 alt d2]]≝ {o1⊎o2 ∣ o1∈[[d1]]∧o2∈[[d2]]}

Inner union of interaction obligations ⊎:

(p1,n1) ⊎ (p2,n2) ≝ (p1∪p2, n1∪n2)

Xalt results in distinct interaction obligations:

[[d1 xalt d2]]≝ [[d1]] ∪ [[d2]]

INF5150 INFUIT Haugen / Stølen 16

IN
F 5150

Informal illustration of MakeAppointment

INF5150 INFUIT Haugen / Stølen 17

IN
F 5150

The pragmatics of alt vs xalt

Use alt to specify alternatives that represent similar
traces, i.e. to model
– underspecification

Use xalt to specify alternatives that must all be present in
an implementation, i.e. to model
– inherent nondeterminism, as in the specification of a coin toss
– alternative traces due to different inputs that the system must be

able to handle (as in DecideAppTime)
– alternative traces where the conditions for these being positive

are abstracted away (as in CancelAppointment on slide 12)

INF5150 INFUIT Haugen / Stølen 18

IN
F 5150

Guards (1)

Guards may be used to
express conditions for
choosing between
alternatives
Here: an error message is
sent if the client tries to
cancel an appointment
less than 24 hours before
it is due

INF5150 INFUIT Haugen / Stølen 19

IN
F 5150

Guards (2)

Semantically, a guard is represented by a special check-
event
The check-event ensures that for each operand to alt/xalt,
its traces (including the check-event) become negative if
the guard is false
– otherwise they remain positive or negative as before

Therefore the guard must be true in all possible situations
in which the specified traces are positive
An alt/xalt operand without a guard can be interpreted as
having the guard ⊤ (always true)
More than one guard may be true at a time

INF5150 INFUIT Haugen / Stølen 20

IN
F 5150

Guards (3)

If all guards are false, all described traces are negative
In an alt-construct, make sure that the guards are
exhaustive
If doing nothing is valid, specify this by using the empty
diagram, skip
[[skip]]≝ {({<>},∅)}
– A single interaction obligation where only the empty trace <> is

positive and the set of negative traces is empty

INF5150 INFUIT Haugen / Stølen 21

IN
F 5150

The pragmatics of guards

Use guards in an alt/xalt construct to constrain the
situations in which the different alternatives are positive
Always make sure that for each alternative, the guard is
sufficiently general to capture all possible situations in
which the described traces are positive
In an alt-construct, make sure that the guards are
exhaustive

INF5150 INFUIT Haugen / Stølen 22

IN
F 5150

Specifying negative behaviour: refuse

[[refuse d]]≝ {(∅,p∪n) ∣ (p,n)∈[[d]]}
All interaction obligations in
[[refuse d]] have empty positive sets
This means that all interaction
obligations in [[d1 seq (refuse d2)]]
have empty positive sets
– and the same applies to

[[(refuse d1) seq d2]]

Player Coin

flip

sd Heads

heads

tails

alt

refuse

[[Heads]] = {({<!f, ?f, !h, ?h>}, {<!f, ?f, !t, ?t>})}

INF5150 INFUIT Haugen / Stølen 23

IN
F 5150

Specifying negative behaviour: veto

[[veto d]]≝ [[skip alt (refuse d)]]
... which means that
[[veto d]] = {({<>},p∪n) ∣ (p∪n)∈[[d]]}

[[Heads]] = {({<!f, ?f, !h, ?h>, <!f, ?f>} , {<!f, ?f, !t, ?t>})}

Player Coin

flip

sd Heads

heads

tails

alt

veto

INF5150 INFUIT Haugen / Stølen 24

IN
F 5150

Specifying negative behaviour : assert

By using assert, all inconclusive traces
are redefined as negative
This ensures that for each interaction
obligation, at least one of its positive
traces will be implemented in the final
implementation
[[assert d]]≝ {(p,n∪(ℋ\p)) ∣ (p,n)∈[[d]]}

Player Coin

flip

sd Heads

heads
assert

[[Heads]] = {({<!f, ?f, !h, ?h>}, n)}
n = all traces where the first event on the lifeline of Player is !f and the first
event on the lifeline of Coin is ?f except the trace <!f, ?f, !h, ?h>

INF5150 INFUIT Haugen / Stølen 25

IN
F 5150

appointmentMade() may not occur
here (veto=neg)

noAppointment() may not occur
instead of appointmentMade() here

noAppointment () is the only
message that may occur here

From 0 to
4 iterations
(with seq
between)

Negative behaviour

INF5150 INFUIT Haugen / Stølen 26

IN
F 5150

veto or refuse?

Should doing nothing be
possible in the otherwise
negative situation?
– If yes, use veto
– If no, use refuse

It is OK to do nothing between no()
and appointmentSuggestion(time)

It is not OK to do nothing after yes()

INF5150 INFUIT Haugen / Stølen 27

IN
F 5150

when to use assert?

Sending noAppointment() is
the only acceptable
response to the no()
message at this point

INF5150 INFUIT Haugen / Stølen 28

IN
F 5150

The pragmatics of negation

To effectively constrain the implementation, the
specification should include a reasonable set of negative
traces
Use refuse when specifying that one of the alternatives in
an alt-construct represents negative traces
Use veto when the empty trace (i.e. doing nothing) should
be positive, as when specifying a negative message in an
otherwise positive scenario
Use assert on an interaction fragment when all positive
traces for that fragment have been described
– Use assert with caution!

INF5150 INFUIT Haugen / Stølen 29

IN
F 5150

The use of seq

A trace is not necessarily
negative even if a prefix of it is
negative
The total trace must be
considered when categorizing it
as positive, negative or
inconclusive

cancel(appointment) followed by
appointmentCancelled() followed by

nothing is negative

cancel(appointment) followed by
appointmentCancelled()

followed by the positive traces
of Payment is positive

INF5150 INFUIT Haugen / Stølen 30

IN
F 5150

The pragmatics of weak sequencing

Be aware that by weak sequencing
– a positive sub-trace followed by a positive sub-trace is positive
– a positive sub-trace followed by a negative sub-trace is negative
– a negative sub-trace followed by a positive sub-trace is negative
– a negative sub-trace followed by a negative sub-trace is negative
– the remaining trace combinations are inconclusive

Remember the definition:
(p1,n1)≿(p2,n2)≝ (p1≿p2 , (n1≿p2)∪(n1≿n2)∪(p1≿n2))

INF5150 INFUIT Haugen / Stølen 31

IN
F 5150

The pragmatics of refining interactions

INF5150 INFUIT Haugen / Stølen 32

IN
F 5150

The use of supplementing

Inconclusive trace are recategorized as either
positive or negative (for an interaction obligation)
New situations are considered
– adding fault tolerance
– new user requirements
– ...

Typically used in early phases

INF5150 INFUIT Haugen / Stølen 33

IN
F 5150

Supplementing of interaction obligations

(p,n) ⇝s (p’,n’) ≝ p⊆p’∧ n⊆n’

Positive

Negative

InconclusiveSupplementing

INF5150 INFUIT Haugen / Stølen 34

IN
F 5150

Supplementing of specifications

d⇝s d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝s o’
d’ is a supplementing of d if
– for every interaction obligation o in [[d]] there is at least one interaction

obligation o’ in [[d’]] such that o’ is a supplementing of o

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]: s s s

s s s

INF5150 INFUIT Haugen / Stølen 35

IN
F 5150

Example of supplementing

Positive
Negative

INF5150 INFUIT Haugen / Stølen 36

IN
F 5150

The pragmatics of supplementing

Use supplementing to add positive or negative traces to
the specification
When supplementing, all of the original positive traces
must remain positive, and all of the original negative
traces must remain negative
Do not use supplementing on the operand of an assert
– no traces are inconclusive in the operand

INF5150 INFUIT Haugen / Stølen 37

IN
F 5150

Narrowing

Reduce underspecification by redefining positive traces
as negative
For example adding guards, or replacing a guard with a
stronger one
– traces where the guard is false become negative

(p,n) ⇝n (p’,n’) ≝ p’⊆p∧ n’=n∪(p\p’)
d⇝n d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝n o’

Positive

Negative

Inconclusive Narrowing

INF5150 INFUIT Haugen / Stølen 38

IN
F 5150

Example of narrowing

For each operand, traces where the
guard is false become negative

INF5150 INFUIT Haugen / Stølen 39

IN
F 5150

The pragmatics of narrowing

Use narrowing to remove underspecification by redefining
positive traces as negative
In cases of narrowing, all of the original negative traces
must remain negative
Guards may be added to an alt-construct as a legal
narrowing step
Guards may be added to an xalt-construct as a legal
narrowing step
Guards may be narrowed, i.e. the refined condition must
imply the original one

INF5150 INFUIT Haugen / Stølen 40

IN
F 5150

The use of detailing

Reducing the level of abstraction by structural
decomposition
– One or more lifelines are decomposed

The positive and the negative traces are the same,
except that
– internal communication is hidden at the abstract level
– events occurring on a composed lifeline at the abstract level occur

instead on one of the sub-component lifelines

INF5150 INFUIT Haugen / Stølen 41

IN
F 5150

Example of detailing

Internal
communication

Components of
AppSystem

INF5150 INFUIT Haugen / Stølen 42

IN
F 5150

Detailing

L is a mapping that defines the translation from concrete
to abstract lifelines
– L={Client↦Client, Billing↦AppSystem, Calendar↦AppSystem}
– This implies that Billing and Calendar are components of

AppSystem
subst(t,L) is a function that substitutes lifelines in the trace
t according to L
abstr(s,L,E) is an abstraction function that transforms a set
of concrete traces s into a set of abstract traces
– by removing all internal events (w.r.t. L) that are not in E

E is a set of abstract events
– Necessary to allow messages that an abstract lifeline sends to

itself to be visible in the abstract diagram

INF5150 INFUIT Haugen / Stølen 43

IN
F 5150

Formal definition of detailing

(p,n) ⇝c
L,E (p’,n’) ≝ p=abstr(p’,L,E)∧ n=abstr(n’,L,E)

d⇝c
L,E d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝c

L,E o’

Internal events not
visible at the
abstract level

INF5150 INFUIT Haugen / Stølen 44

IN
F 5150

The pragmatics of detailing

Use detailing to increase the level of granularity of the
specification by decomposing lifelines
When detailing, document the decomposition by creating
a mapping L from the concrete to the abstract lifelines
When detailing, make sure that the refined traces are
equal to the original ones when abstracting away internal
communication and taking the lifeline mapping into
account

INF5150 INFUIT Haugen / Stølen 45

IN
F 5150

The use of general refinement

A combination of supplementing, narrowing and detailing
– (not necessarily all three)

Allows all positive traces to become negative, while
previously inconclusive traces become positive
To ensure that a trace must be present in the final
implementation we need an interaction obligation where
all other traces are negative

INF5150 INFUIT Haugen / Stølen 46

IN
F 5150

Example of general refinement

supplementing

narrowing

narrowing

Note: According to
UML, the guards are
on the wrong lifeline

INF5150 INFUIT Haugen / Stølen 47

IN
F 5150

General refinement (of sets of interaction obligations)
d⇝ d’ ≝∀o∈[[d]]:∃o’∈[[d’]]: o⇝ o’
d’ is a general refinement of d if
– for every interaction obligation o in [[d]] there is at least one

interaction obligation o’ in [[d’]] such that o’ is a general
refinement of o

New interaction obligations may also be added
– that do not refine any obligation at the abstract level

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:

INF5150 INFUIT Haugen / Stølen 48

IN
F 5150

The pragmatics of general refinement

Use general refinement to perform a combination of
supplementing, narrowing and detailing in a single step
To define that a particular trace must be present in an
implementation use xalt and assert to characterize an
obligation with this trace as the only positive one and all
other traces as negative

INF5150 INFUIT Haugen / Stølen 49

IN
F 5150

Limited refinement

Limits the possibility of adding new interaction obligations
Typically used at a later stage
d’ is a limited refinement of d if
– d’ is a general refinement of d, and
– every interaction obligation in [[d’]] is a general refinement of at

least one interaction obligation in [[d]]

p1

n1

H \(p1∪n1)[[d]]:
p2

n2

H \(p2∪n2)

p1
'

n1
'

H \(p1
'∪n1

')
p2

'

n2
'

H \(p2
'∪n2

')
p3

'

n3
'

H \(p3
'∪n3

')[[d’]]:

INF5150 INFUIT Haugen / Stølen 50

IN
F 5150

The pragmatics of limited refinement

Use assert and switch to limited refinement in order to
avoid fundamentally new traces being added to the
specification
To specify globally negative traces, define these as
negative in all operands of xalt, and switch to limited
refinement

INF5150 INFUIT Haugen / Stølen 51

IN
F 5150

Compositionality

A refinement operator ⇝ is compositional if it is
– reflexive: d⇝d
– transitive: d⇝d’∧ d’⇝d’’⇒ d⇝d’’
– the operators refuse, veto, alt, xalt and seq are monotonic w.r.t. ⇝ :

d⇝d’⇒ refuse d ⇝ refuse d’
d⇝d’⇒ veto d ⇝ veto d’
d1⇝ d1’∧ d2⇝ d2’⇒ d1 alt d2 ⇝ d1’ alt d2’
d1⇝ d1’∧ d2⇝ d2’⇒ d1 xalt d2 ⇝ d1’ xalt d2’
d1⇝ d1’∧ d2⇝ d2’⇒ d1 seq d2 ⇝ d1’ seq d2’

Transitivity allows stepwise development
Monotonicity allow different parts of the specification to be refined
separately
Supplementing, narrowing, detailing, general refinement and limited
refinement are all compositional ☺

	The pragmatics of STAIRS��Paper by Ragnhild Kobro Runde, Øystein Haugen and Ketil Stølen
	Today’s topics
	Semantic model of STAIRS
	Weak sequencing
	Weak sequencing of trace sets
	Weak sequencing of interaction obligations
	Formal semantics of seq
	The pragmatics of creating interactions
	Example: an appointment system
	xalt vs alt (1): CancelAppointment
	xalt vs alt (2): MakeAppointment
	xalt vs alt (3): DecideAppTime
	xalt vs alt (4): CancelAppointment
	xalt vs alt (5)
	Formal semantics of alt and xalt
	Informal illustration of MakeAppointment
	The pragmatics of alt vs xalt
	Guards (1)
	Guards (2)
	Guards (3)
	The pragmatics of guards
	Specifying negative behaviour: refuse
	Specifying negative behaviour: veto
	Specifying negative behaviour : assert
	Negative behaviour
	veto or refuse?
	when to use assert?
	The pragmatics of negation
	The use of seq
	The pragmatics of weak sequencing
	The pragmatics of refining interactions
	The use of supplementing
	Supplementing of interaction obligations
	Supplementing of specifications
	Example of supplementing
	The pragmatics of supplementing
	Narrowing
	Example of narrowing
	The pragmatics of narrowing
	The use of detailing
	Example of detailing
	Detailing
	Formal definition of detailing
	The pragmatics of detailing
	The use of general refinement
	Example of general refinement
	General refinement (of sets of interaction obligations)
	The pragmatics of general refinement
	Limited refinement
	The pragmatics of limited refinement
	Compositionality

