

Agile modeling – for INF5150

Version 091002 ICU 0-1

Oblig 2

- Also Oblig2 is made individually
- This does not mean you need to work alone
 - but you need to acquire the competence
 - and the knowledge of absolutely all the details

ICU0 – your very first "I see you" system

surveillance at your fingertips, first we only observe ourselves

Tools for executable modeling in INF5150

Agile modeling

- "agile"
 - = having a quick resourceful and adaptable character
- executable models!
- very stepwise approach
 - each step will have its specification and executable model
 - each step should be tested
- We shall use one example throughout the course
 - with many steps
 - intended to be mirrored by the project exercise model
- Every week a working program!

Manifesto for Agile Software Development

- We are uncovering better ways of developing software by doing it and helping others do it.
- Through this work we have come to value:
 - Individuals and interactions over processes and tools
 - Working software over comprehensive documentation
 - Customer collaboration over contract negotiation
 - Responding to change over following a plan
- That is, while there is value in the items on the right, we value the items on the left more.

UNIVERSITY OF OSLO ____

Dialectic Software Development

- Software Development is a process of learning
 - once you have totally understood the system you are building, it is done
- Learning is best achieved through conflict, not harmony
 - discussions reveal problematic points
 - silence hides critical errors
- By applying different perspectives to the system to be designed
 - inconsistencies may appear
 - and they must be harmonized
- Inconsistencies are not always errors!
 - difference of opinion
 - difference of understanding
 - misunderstanding each other
 - a result of partial knowledge
- Reliable systems are those that have already met challenges

Buzzzzz 1: Agility

- Give 3 reasons for why agile modeling/programming is a good approach
- Give 3 possible problems for an agile approach
- Give each pro and each con a short name

UML Use Cases – very very simple

3-Oct-09

Use cases in a separate package

UML Sequence Diagrams: a more precise way

Packages, Collaboration, Composite Structure

Model-time Consistency!

Structure hierarchy

14

INF 5150

A State Machine defining the whole system

INF5150 – Unassailable IT-systems

JavaFrame action language

- In principle all java can be used
 - but we try only to use simple constructs
 - we prefer to use Activity constructs for loops/choices etc.
- output (Signal, Port, csm)
 - sends a signal through a local port.
 - typically the signal is like "new S(parm1, parm2)"
 - typically the port is like "csm.toSomewhere"
 - "csm" is like a keyword meaning "current state machine"
- To read from the most recent consumed signal, use "sig"
 - sig has been cast to the right type (normally)
 - Example: "sig.parm1" when sig is consumed as object of class S

Transition Effect – Activity Diagram

INF 5150

INF5150 – Unassailable IT-systems

Buzzzzz 2: Refinement

- Assume that the semantics of the state machine are the traces that it potentially may produce (given all reasonable input from a Mobile) as positive traces and all other traces as negative.
- Is the state machine *ICUprocess* a refinement of the interaction *KMLfile*?
- Is the opposite refinement true? (that KMLfile is a refinement of ICUprocess)

KML: using GoogleEarth to place mobiles

INF5150 – Unassailable IT-systems

Testing ICU0

UNIVERSITY OF OSLO

by using the UML Testing Profile with foils also from Prof. Dr. Ina Schieferdecker

The Problem

- Software
 - Increases in complexity, concurrency, and dynamics
 - Quality is key
 - Functionality
 - Performance
 - Scalability
 - Reliability
 - Usability
 - Efficiency
 - Maintainability
 - ...
- Testing is
 - Means to obtain objective quality metrics about systems in their target environment
 - Central means to relate requirements and specification to the real system

Testing Today

■ Is

- Important
- Means to obtain approval
- Time critical

But often

- Rarely practiced
- Unsystematic
- Performed by hand
- Error-prone
- Considered being destructive
- Uncool

"If you are a bad programmer you might be a tester"

• Conjecture:

There is a lack of appropriate test methods and techniques

Testing is ...

- A technical process
- Performed by experimenting with a system
- In a controlled environment following a specified procedure
- With the intent of observing one or more characteristics of the system
- By demonstrating the deviation of the system's actual status from the required status/specification.

Goals of the UML Testing Profile

- Definition of a testing profile to capture all information that would be needed by different test processes
 - To allow black-box testing (i.e. at UML interfaces) of computational models in UML
- A testing profile based upon UML 2.0
 - That enables the test definition and test generation based on structural (static) and behavioral (dynamic) aspects of UML models, and
 - That is capable of inter-operation with existing test technologies for blackbox testing
- Define
 - Test purposes for computational UML models, which should be related to relevant system interfaces
 - Test components, test configurations and test system interfaces
 - Test cases in an implementation independent manner

Test Concepts: Black-Box Testing

Test context and system context are similar

INF 5150

3-Oct-09

UNIVERSITY OF OSLO

Test behavior and context behavior are similar

UNIVERSITY

Buzzzz 3: Why both context behavior and tests?

- Why do we need tests when we have context behavior
 - We do not always only want pass verdicts
 - we could also use the neg fragments in Sequence Diagrams
 - We may want more tests than context behaviors
- Tests should be explicit
 - Identify the SUT and the Test components
 - this distinction is not done in the context behavior sequence diagrams
 - Clearly specify the verdicts
 - context behaviors usually specify potential positive behaviors only

UNIVERSITY

OF OSL

How to execute the tests

- Generated test components
 - we could specify the behavior of the test components
 - then compile and run the total test management system
 - and have the tool verify the test cases by comparison
- Manual execution on real environment
 - you operate the mobile phone, and observe the resulting SMSes
 - you observe also the GoogleEarth results
 - Disadvantage: slow procedure since you need to physically move
 - Advantage: it is the real thing
- Manual execution on simulated environment
 - FakePATS made by Frank Davidsen
 - Advantage: quicker turn-around, easier manipulation, cheaper

UNIVERSITY OF OSLO ____

fakepats.jar is also a stand-alone program!

«TestComponent»

Lavany

«SUT»

About operations and methods

In order to keep the low-level java code away from the beautiful symbols of our UML models, we may want to separate some of the nitty, gritty details in out in chunks

3-Oct-09

UNIVERSITY OF OSLO

We will introduce operations/methods

UML distinguish between operation and method

INF5150 – Unassailable IT-systems