
15-Nov-09 INF5150 – Unassailable IT-systems 1

IN
F 5150

More Testing with U2TP
... and more on routing 
... and a few other things

Version 091113
ICU 6-9



15-Nov-09 INF5150 – Unassailable IT-systems 2

IN
F 5150

Testing is …

A technical process

Performed by experimenting with a system

In a controlled environment following a specified
procedure

With the intent of observing one or more characteristics of 
the system

By demonstrating the deviation of the system’s actual
status from the required status/specification.



15-Nov-09 INF5150 – Unassailable IT-systems 3

IN
F 5150

Buzz 1: Why Model-driven Testing?

Spend 2 minutes with one person beside you
List reasons in favor and against model-driven testing
– write your reasons down on a piece of paper
– we shall come back to your reasons somewhat later

This will probably reveal your prejudices of what model-
driven testing is and can be used for



15-Nov-09 INF5150 – Unassailable IT-systems 4

IN
F 5150

Types of Testing
Level

Accessibility

unit

Aspect

white boxblack box
load/performance

functionality

robustness

usability
interoperability

acceptance

integration

grey box

…

unit

domain of UML 
Testing Profile



15-Nov-09 INF5150 – Unassailable IT-systems 5

IN
F 5150

UML Testing Profile

To allow black-box testing (i.e. at UML interfaces) of 
computational models in UML
A testing profile based upon UML 2.0

– That enables the test definition and test generation based on 
structural (static) and behavioral (dynamic) aspects of UML 
models, and

– That is capable of inter-operation with existing test technologies
for black-box testing

Standardized profile recommended by OMG
– http://www.omg.org/cgi-bin/doc?formal/05-07-07

http://www.omg.org/cgi-bin/doc?formal/05-07-07


15-Nov-09 INF5150 – Unassailable IT-systems 6

IN
F 5150

A book by Springer (978-3-540-72562-6)



15-Nov-09 INF5150 – Unassailable IT-systems 7

IN
F 5150

Test Context
Test Case

Test Concepts: Black-Box Testing

Stimulus Response

System Under Test
(SUT)

Port

• Assignment
of a
Test Verdict



15-Nov-09 INF5150 – Unassailable IT-systems 8

IN
F 5150

Test Execution
Test ContextTest Context

Test CaseTest Case

StimulusStimulus ResponseResponse

System Under Test
(SUT)

PortPort

• Assignment
of a
Test Verdict

Test Harness / Test execution platform
machine-based or human-based

human
interpretationcompilation



15-Nov-09 INF5150 – Unassailable IT-systems 9

IN
F 5150

Unit Level Testing

For unit level testing, the SUT is the smallest unit, e.g. a 
class or an operation, which is to be tested.



15-Nov-09 INF5150 – Unassailable IT-systems 10

IN
F 5150

System and Acceptance Level Testing

The goal of system level testing is to verify that the 
system under test conforms to its requirements.
Acceptance testing is basically an extension of system 
testing in which requirements and the test cases 
associated with validating them are developed by or with 
the customer(s) and are considered to be contractual 
descriptions of the required system behavior.



15-Nov-09 INF5150 – Unassailable IT-systems 11

IN
F 5150

ICU5 system test context
test package imports

def of system

System 
Under 
Test

Test component

Test case

Test 
case 

returns

Test configuration



15-Nov-09 INF5150 – Unassailable IT-systems 12

IN
F 5150

Test control problems

How to enforce
the desired
sequence?

Verdict Verdict

Verdict?



15-Nov-09 INF5150 – Unassailable IT-systems 13

IN
F 5150

Arbitration (1)

Verdict Verdict

Verdict?



15-Nov-09 INF5150 – Unassailable IT-systems 14

IN
F 5150

Arbitration (2)

One fail is normally enough to force a fail test case
– pass, inconclusive, fail is ordered such that the least value is the

final resulting verdict

Arbitration can also be defined by the user
– possibly one single fail should not suffice to force a full failure



15-Nov-09 INF5150 – Unassailable IT-systems 15

IN
F 5150

Arbitration (3)

Verdict

When to determine
this Verdict?

Verdict?

There is just no
response for Trine’s

Sms stimulus



15-Nov-09 INF5150 – Unassailable IT-systems 16

IN
F 5150

Test strategy – acceptance test

validate that the functionality of the system is correct with respect to 
the requirements
validate the non-functional (extra-functional) properties
– Performance testing

to see if a system can meet its expected response times under typical 
workloads.

– Load testing
to determine whether the system suffers from resource problems (memory 
leaks, buffer problems) or otherwise undergoes degradation

– Stress testing
to determine how gracefully it may recover from extreme situations

– Reliability
the probability of correct operation of a piece of software for a specified 
amount of time.

validate that the supported software distribution and deployment
configurations are correctly supported



15-Nov-09 INF5150 – Unassailable IT-systems 17

IN
F 5150

Buzz 2: Testing strategy – advanced tests (Buzz 5 min)

Challenges
– How to test systems that have non-deterministic behavior?

due to concurrency
– How to test time requirements

test probes changes the timing of the system
– How to simulate extreme load situations

1 million SMS-messages within a minute



15-Nov-09 INF5150 – Unassailable IT-systems 18

IN
F 5150

Dynamic Data (still transient)
Signal hierarchies
Combined Fragments of Sequence Diagram



15-Nov-09 INF5150 – Unassailable IT-systems 19

IN
F 5150

Register users Associate the nickname
”haugen” with the static

id ”STAT-ID”

combined fragment: 
alternative

even though we may
describe alternative 
execution traces, we

are not obliged to 
describe them all!

decompose for 
detailed specification



15-Nov-09 INF5150 – Unassailable IT-systems 20

IN
F 5150

Register users - decomposition

more signals defined
by the designerextra-global combined

fragment: alternative



15-Nov-09 INF5150 – Unassailable IT-systems 21

IN
F 5150

Signal hierarchy – normal object orientation
common

abstract signal 
with routing info

hotpos

reg



15-Nov-09 INF5150 – Unassailable IT-systems 22

IN
F 5150

Effect on routing (1)

common
abstract signal 

with routing info



15-Nov-09 INF5150 – Unassailable IT-systems 23

IN
F 5150

Effect on routing (2)

common
abstract signal 

with routing info



15-Nov-09 INF5150 – Unassailable IT-systems 24

IN
F 5150

Repeating our simple composite structure

the
receptionist

the
sessions

the data



15-Nov-09 INF5150 – Unassailable IT-systems 25

IN
F 5150

Adding a new service is no sweat!

just add another
submachine state



15-Nov-09 INF5150 – Unassailable IT-systems 26

IN
F 5150

The new state machine

significant work
is left to the

Archive process



15-Nov-09 INF5150 – Unassailable IT-systems 27

IN
F 5150

The Archive process enhanced

our new input to 
the Archive



15-Nov-09 INF5150 – Unassailable IT-systems 28

IN
F 5150

Check registration transition

check if static id already exists

if it exists, send our own
defined message about it

check if nick name already exists

if it exists, send our own
defined message about it

include the new user in table



15-Nov-09 INF5150 – Unassailable IT-systems 29

IN
F 5150

Write down the names of these UML concepts

a)

c) d)

b)

e)

a) Interaction [Frame, Sequence Diagram]

b) Lifeline

c) Combined fragment [alt-fragment]

d) Message

e) Gate



15-Nov-09 INF5150 – Unassailable IT-systems 30

IN
F 5150

Check consistency with spec!



15-Nov-09 INF5150 – Unassailable IT-systems 31

IN
F 5150

Summary of adding the reg service

Specify what the new service is supposed to do
– use case in prose
– sequence diagrams on context and detailed levels

Define necessary internal signals
– make sure routing will be performed properly

Define a new submachine state in the session process
Define the corresponding state machine
– this may involve the data process

add new transitions with new data operations

Notice that the old system is hardly changed!
– there are only additions

Check the consistency between specification and design



15-Nov-09 INF5150 – Unassailable IT-systems 32

IN
F 5150

On Routing
- and a few other lessons



15-Nov-09 INF5150 – Unassailable IT-systems 33

IN
F 5150

Lessons to be learned now

Small changes to the user’s specification may result in 
rather far reaching effects on the software
3rd party software interface can be quite important
Routing can be done several ways
Agile modeling normally involves re-engineering
– that sometimes may become rather fundamental



15-Nov-09 INF5150 – Unassailable IT-systems 34

IN
F 5150

Hotpos – as of ICU6

Only ask hotpos
Returning the position of the
user relative to the hotspots



15-Nov-09 INF5150 – Unassailable IT-systems 35

IN
F 5150

Hotpos – as of ICU7 – a minor change?

Only hotpos is as before
hotpos nickname
should give the position of the
person registered with the
nickname relative to the users
hotspots

What could possibly be the
problem?

Let us look at the
decomposition!



15-Nov-09 INF5150 – Unassailable IT-systems 36

IN
F 5150

icus_hotspot
Static id of
the user

Static id of
the buddySTAT-TR

Need STAT-ID 
for routing!



15-Nov-09 INF5150 – Unassailable IT-systems 37

IN
F 5150

Routing PosResult in ICU6

Static id of the
GSM having

been positioned



15-Nov-09 INF5150 – Unassailable IT-systems 38

IN
F 5150

The problem

We want PosResult to be routed according to STAT-ID
– STAT-ID is the static id of the user which identifies the session

PosResult returns an XML-string which includes the static
id of the positioned GSM
– which is no longer identical to the user!

PosResult is a message not defined by you, but in 
principle by a third party
– which means you cannot change the interface!

We need to take a closer look at the SMSMediator
interface!



15-Nov-09 INF5150 – Unassailable IT-systems 39

IN
F 5150

PosResult – the javadoc (1/2)

we have 
used this

could we benefit
from this?



15-Nov-09 INF5150 – Unassailable IT-systems 40

IN
F 5150

PosResult – the javadoc (2/2)

faulty documentation

what does this mean?



15-Nov-09 INF5150 – Unassailable IT-systems 41

IN
F 5150

Exploring the SMSMediator interface

When the documentation is less than satisfactory (and it 
always is), one has to experiment with the interface
We hypothesize that PATS have had the same need to 
tag the communication as we have
– thus we hope that the messageId of PosRequest (that we can

choose) is returned as the messageId of the corresponding
PosResult

Through experimentation we assert that this is indeed the
case!



15-Nov-09 INF5150 – Unassailable IT-systems 42

IN
F 5150

hotpos nickname

positionId

messageId

messageId



15-Nov-09 INF5150 – Unassailable IT-systems 43

IN
F 5150

Hotpos submachine

positionId

messageId



15-Nov-09 INF5150 – Unassailable IT-systems 44

IN
F 5150

Adapted forward doing the routing

session id is now very
readily available



15-Nov-09 INF5150 – Unassailable IT-systems 45

IN
F 5150

More on the problems of routing

... just to get a feeling for what is normally
behind the scenes



15-Nov-09 INF5150 – Unassailable IT-systems 46

IN
F 5150

The receptionist-session-archive architecture

the router the sessions

the data

routing domain

explicitly connect to 
the router

explicitly
connect to the

singular archive

explicitly connect to 
the outward port



15-Nov-09 INF5150 – Unassailable IT-systems 47

IN
F 5150

Our architecture’s routing strategy

Local addressing within the routing domain
– in fact each process may only send to its own outward ports
– the routing domain sets up the connections

Explicit connection to either singular parts or port, or to 
the (single) router
– In ICU we connect to

contr:ICUcontroller which is the router (and a singular part)
dataproc:Archive which is a singular part
SMSout:SmsOutputMediator which is a singular port

Routing may take into account any information
– but it is quite normal that the routing is done on a table where an 

identifier is mapped to an address
the address in our case is a port



15-Nov-09 INF5150 – Unassailable IT-systems 48

IN
F 5150

Alternative 1: The global address space

A global address space means that for the whole system
– any process (or its ports) has a unique address
– any such address can be reached

This is similar to the web and its URL
This presumes that
– there is an underlying system of routing
– with the effect that logically there is a connection between any two 

processes of the whole system



15-Nov-09 INF5150 – Unassailable IT-systems 49

IN
F 5150

Alternative 1: The global routing table

common routing table

superfluous?



15-Nov-09 INF5150 – Unassailable IT-systems 50

IN
F 5150

Alternative 2: Multicast / broadcast

Multicast
meditator –

sending to all 
in icuproc set

Another multicast port



15-Nov-09 INF5150 – Unassailable IT-systems 51

IN
F 5150

Comparison

Alt 0: Local addressing
– local logic – but more logic through explicit connections
– easy to make several instantiations
– possible bottleneck at the router

Alt 1: Global addressing
– simple logic, especially when returning answers
– requires underlying routing system
– more global reasoning which may mean more difficult distribution

Alt 2: Multicast / broadcast
– no routing, the process decides for each message
– simple communication
– each process does a lot of futile work, but this may not be 

important if there are enough concurrent resources available



15-Nov-09 INF5150 – Unassailable IT-systems 52

IN
F 5150

Agile modeling and session identifier

We have used Static Id as our session identifier
– This meant that the same GSM may not invoke more than one 

session at any point in time
– Not a very tough restriction, but unnecessary and cumbersome to 

check

We chose Static Id as session identifier
– since it was the easiest choice from a system where there were 

no sessions
– we had not discovered the augmented features of the SMSPorts

It is typical for incremental development that
– early decisions must be reviewed in light of new findings
– and the system re-engineered
– Here we may choose to go for unique session numbers



15-Nov-09 INF5150 – Unassailable IT-systems 53

IN
F 5150

Even More Testing with U2TP
- Focusing on describing test data
- what data to test



15-Nov-09 INF5150 – Unassailable IT-systems 54

IN
F 5150

Testing again – focusing on data

How to describe test data
– wildcards
– data pools, data partitions and data selectors

Principles for selecting data
– Equivalence Class Partitioning
– Boundary Value Analysis
– Classification Tree Method

Preamble and Postamble



15-Nov-09 INF5150 – Unassailable IT-systems 55

IN
F 5150

Wildcards (1) – symbolic values

symbolic
value

the same value

another value



15-Nov-09 INF5150 – Unassailable IT-systems 56

IN
F 5150

Wildcards (2) – explaining symbolic values

Symbolic values are the same as an instance with a 
wildcard value
– String STAT-ID = *

where the asterisk designates that the value itself is of no importance
– String STAT-TR = *

another string value (not necessarily distinct from STAT-ID)

We could also have said:
– Sms(message="Stud1 konto oysteinh hotpos",to="2034",from=*)

again where the asterisk designates ”whatever value”
the disadvantage is that now we cannot easily refer to that value later

– Sms("Stud1 konto oysteinh hotpos",2034,A-CGHDWQ)
this becomes almost too concrete with little to gain



15-Nov-09 INF5150 – Unassailable IT-systems 57

IN
F 5150

Testing registration



15-Nov-09 INF5150 – Unassailable IT-systems 58

IN
F 5150

We need a pool of users

We need a data pool of users
– where some have new 

nicknames and static id
– some have old nicknames and 

new static id
– some have new nicknames 

and old static id
– some have old nicknames and 

old static id

instance nickname static id
Oystein Oystein STAT-ID

Trine Trine STAT-TR
Sverre Sverre STAT-SV
Sigurd Sigurd STAT-FS



15-Nov-09 INF5150 – Unassailable IT-systems 59

IN
F 5150

How to define a data pool of Users
the whole pool

dividing the user
cellphones in 

partitions based
on Nickname

this operation
magically chooses

from a partition



15-Nov-09 INF5150 – Unassailable IT-systems 60

IN
F 5150

Equivalence Class Partitioning

Equivalence partitioning is based on the premise that
– the inputs and outputs of a component can be partitioned into 

partitions that, according to the component's specification, will be 
treated similarly by the component.

Thus the result of testing a single value from an 
equivalence partition is considered representative of the 
complete partition
In ICU:
– provided neither Oystein nor Trine has ever registered, it is of no 

concern which of the two users are applied for the test of 
registration



15-Nov-09 INF5150 – Unassailable IT-systems 61

IN
F 5150

Boundary Value Analysis

Boundary Value Analysis is based on the following 
premise.
– Firstly, that the inputs and outputs of a component can be 

partitioned into partitions that, according to the component's 
specification, will be treated similarly by the component and,

– Secondly, that developers are prone to making errors in their 
treatment of the boundaries of these classes.

Thus test cases are generated to exercise these 
boundaries.
In ICU:
– There are no boundaries to name spaces
– For Hotpos, the problems should occur where the distances to 

several hotspots are the same



15-Nov-09 INF5150 – Unassailable IT-systems 62

IN
F 5150

Classification Tree Method

As for classification-tree method, the input domain of a 
test object is regarded under various aspects assessed 
as relevant for the test.
– For each aspect, disjoint and complete classifications are formed.
– Classes resulting from these classifications may be further 

classified – even recursively.

The stepwise partition of the input domain by means of 
classifications is represented graphically in the form of a 
tree.



15-Nov-09 INF5150 – Unassailable IT-systems 63

IN
F 5150

Testing registration



15-Nov-09 INF5150 – Unassailable IT-systems 64

IN
F 5150

ICU registration classification tree

nickname static id of sender

exists new exists new

testReg

testReg2

testReg3

Registration



15-Nov-09 INF5150 – Unassailable IT-systems 65

IN
F 5150

Preamble and Postamble

A test preamble is a description of how to get the test 
system into a situation where the next test can be 
executed
A test postamble is a description of how to clean-up after
the test
A combined test may often be done such that the tests 
normally make up each others preamble
– TestReg will make CellPhone(Oystein,STAT-ID) registered
– TestReg2 or TestReg3 have then their preconditions satisfied



15-Nov-09 INF5150 – Unassailable IT-systems 66

IN
F 5150

hotpos [nickname]



15-Nov-09 INF5150 – Unassailable IT-systems 67

IN
F 5150

ICU hotpos classification tree

nickname static id of sender

exists new exists new

error sms (?)

normal

error sms

Is this intended?

hotpos nick



15-Nov-09 INF5150 – Unassailable IT-systems 68

IN
F 5150

Unintended cases: the positioning stranger

The systematic testing reveals:
– A complete stranger may position any one registered as long as 

he/she knows their nickname

What was the real intention behind registration?
– That the ones inside can see others inside
– Not that anybody can see the insiders and nobody can see the 

outsiders!
– Remedy: Only registered users can position others

Systematic testing reveals
– not only errors in the design and the implementation
– but also problems with the requirements

there were inconclusive traces that should have been negative



15-Nov-09 INF5150 – Unassailable IT-systems 69

IN
F 5150

Summary Data-oriented Testing

Not every possible data combination can be tested
Therefore we need to group the data
– such that the values in a group can be considered equal

Apply analysis to form the value groups
– Equivalence Class Partitioning
– Boundary Value Analysis
– Classification Tree Method

Any systematic approach will be better than nothing!
UML Testing Profile offers the following concepts:
– Data Pool
– Data Partition
– Data Selector


	More Testing with U2TP�... and more on routing �... and a few other things
	Testing is …
	Buzz 1: Why Model-driven Testing?
	Types of Testing
	UML Testing Profile
	A book by Springer (978-3-540-72562-6)
	Test Concepts: Black-Box Testing
	Test Execution
	Unit Level Testing
	System and Acceptance Level Testing
	ICU5 system test context
	Test control problems
	Arbitration (1)
	Arbitration (2)
	Arbitration (3)
	Test strategy – acceptance test
	Buzz 2: Testing strategy – advanced tests (Buzz 5 min)
	Dynamic Data (still transient)�Signal hierarchies�Combined Fragments of Sequence Diagram
	Register users
	Register users - decomposition
	Signal hierarchy – normal object orientation
	Effect on routing (1)
	Effect on routing (2)
	Repeating our simple composite structure
	Adding a new service is no sweat!
	The new state machine
	The Archive process enhanced
	Check registration transition
	Write down the names of these UML concepts
	Check consistency with spec!
	Summary of adding the reg service
	On Routing�- and a few other lessons
	Lessons to be learned now
	Hotpos – as of ICU6
	Hotpos – as of ICU7 – a minor change?
	icus_hotspot
	Routing PosResult in ICU6
	The problem
	PosResult – the javadoc (1/2)
	PosResult – the javadoc (2/2)
	Exploring the SMSMediator interface
	hotpos nickname
	Hotpos submachine
	Adapted forward doing the routing
	More on the problems of routing
	The receptionist-session-archive architecture
	Our architecture’s routing strategy
	Alternative 1: The global address space
	Alternative 1: The global routing table
	Alternative 2: Multicast / broadcast
	Comparison
	Agile modeling and session identifier
	Even More Testing with U2TP�- Focusing on describing test data�- what data to test
	Testing again – focusing on data
	Wildcards (1) – symbolic values
	Wildcards (2) – explaining symbolic values
	Testing registration
	We need a pool of users
	How to define a data pool of Users
	Equivalence Class Partitioning
	Boundary Value Analysis
	Classification Tree Method
	Testing registration
	ICU registration classification tree
	Preamble and Postamble
	hotpos [nickname]
	ICU hotpos classification tree
	Unintended cases: the positioning stranger
	Summary Data-oriented Testing

