
20-Nov-09 INF5150 – Unassailable IT-systems 1

IN
F 5150

Robustness –
the art of preparing for the unexpected

Version 091120



20-Nov-09 INF5150 – Unassailable IT-systems 2

IN
F 5150

The exceptional

Data may have strange syntax or values
– we apply common data-parsing techniques

An unexpected signal arrives
– we explicitly describe every conceivable transition

No signal arrives
– we guard our protocols with timers

Security issues
– authentication + logging + statistics

Availability issues
– self tests



20-Nov-09 INF5150 – Unassailable IT-systems 3

IN
F 5150

ICUcontroller: the exceptional
Data may have strange syntax or values
– checking for static id already in use

An unexpected signal arrives
– ICUcontroller handles Sms, PosResult and InternalSignal in all states
– We are going to look at unexpected signals for ICUprocess

No signal arrives
– ICUcontroller does not have such waiting situations (?)
– we shall guard our protocols/services with timers (ICUprocess)

Security issues
– authentication + logging + statistics

Authentication is not needed to enter ICUcontroller
we are going to check for registration in ICUprocess

Availability issues
– self tests

We could use ICUcontroller to test availability of PATS (but don’t)
– we will consider this with the Archive



20-Nov-09 INF5150 – Unassailable IT-systems 4

IN
F 5150

Handling an error or exceptional situation

The invalid situation is due to an inadequate user input
– then we know what caused it and the user should be notified

ICU: The user is notified by an SMS

The invalid situation is due to an internal error
– the reason is unclear, but the situation has become erroneous
– The correct recovery may be hard to specify, but we believe that

terminating the whole program is probably the last resort
ICU: different responses:

– Try and send SMS to the user (if the appropriate user is known)
– Dump the call stack on console (syserr) (very low level)
– Terminate the session (and notify the session owner by an SMS)



20-Nov-09 INF5150 – Unassailable IT-systems 5

IN
F 5150

ICUcontroller’s GenerateSession
Data invariant is 

that Static ID 
should not 

already be used



20-Nov-09 INF5150 – Unassailable IT-systems 6

IN
F 5150

Checking the data invariant

Our task is to check whether STAT-ID is already the ID of 
another ICUprocess
Here are the checking strategies:
– checking directly the data of the routing port

simple, but on low (Java) level
– sending a probe signal and wait for its possible consequences

more protocol needed, and possibly changing the forward() operation
if the normal response is that a timer must expire, this will be slow

– recording which static ids are active (in the Archive)
lots of book-keeping, slower, overkill

We go for the simple java-oriented solution this time



20-Nov-09 INF5150 – Unassailable IT-systems 7

IN
F 5150

Error recovery for the static id re-use

The cause of the static id re-use is most probably 
because the user has sent two requests in quick 
sequence
We should respond by returning an error message to the 
user
– This will imply fixing the composite structure

Move to a final state
– in our service-oriented architecture, the service session is the 

natural unit of recovery, i.e. canceling the current service session 
is often the best approach



20-Nov-09 INF5150 – Unassailable IT-systems 8

IN
F 5150

The robust ICUcontroller’s GenerateSession

Data invariant is checked

Recovery message



20-Nov-09 INF5150 – Unassailable IT-systems 9

IN
F 5150

Modified Composite Structure

Port and 
Connector added



20-Nov-09 INF5150 – Unassailable IT-systems 10

IN
F 5150

ICUProcess: the exceptional

Data may have strange syntax or values
– Checking the correct syntax of the SMS

An unexpected signal arrives
– We are going to look at unexpected signals for ICUprocess

No signal arrives
– we shall guard our protocols/services with timers (ICUprocess)

Security issues
– authentication + logging + statistics

Authentication is not needed to enter ICUcontroller
we are going to check for registration in ICUprocess

Availability issues
– self tests

We could use ICUcontroller to test availability of PATS (but don’t)
– we will consider this with the Archive



20-Nov-09 INF5150 – Unassailable IT-systems 11

IN
F 5150

Explicit transitions please!

Finite State Machines have a great advantage by being 
finite!
– there is a finite set of transitions to execute
– we can make sure to cover them all

UML State Machines also define default transitions
– where the signal is just discarded/consumed
– We believe that default transitions are a warning of design flaw

Not all signals can be properly handled at any time
– We may defer a signal to a state where the signal can be dealt 

with



20-Nov-09 INF5150 – Unassailable IT-systems 12

IN
F 5150

ICUprocess (as of ICUA)
Repetition:

Checking that the 
syntax is all right

Then we shall look 
at the individual 

services



20-Nov-09 INF5150 – Unassailable IT-systems 13

IN
F 5150

ParseSms

If the Sms does not start with ”Stud1 konto username” it will not come 
to the program at all
– Still we may choose to check for it – due to running on FakePats

If there are more than 1 parameter, there is also an error
– at least for the set of services of ICU that we have up to now

We should give user syntax error messages right away
– and not hide it by letting command be null



20-Nov-09 INF5150 – Unassailable IT-systems 14

IN
F 5150

ParseSms robustified (1)
csm.parsedsms=sig.getMessage().split("\\s+");

/* check for existence of necessary prefix - very rudimentary */
if (csm.parsedsms.length<=3) 
{ output(new Sms("ICU: Syntax error - no command",sig.getFrom(),"2034"), csm.smsout,csm);

csm.command = "IERROR";
}
else 
{ csm.command=csm.parsedsms[3];

/* check for only one parameter */
if (csm.parsedsms.length>5)
{ output(new Sms("ICU: Too many parameters!",sig.getFrom(),"2034"), csm.smsout,csm);

csm.command = "IERROR";
}
else
{ if (csm.parsedsms.length>4) csm.param1=csm.parsedsms[4]; else csm.param1=null;
}

}
csm.staticId=sig.getFrom();



20-Nov-09 INF5150 – Unassailable IT-systems 15

IN
F 5150

ParseSms robustified (2)



20-Nov-09 INF5150 – Unassailable IT-systems 16

IN
F 5150

KML service
Problem1:

File system errors

Problem4:
Handling all signals?

Problem5:
Handling all signals?

Problem2:
Effect of deferring

Problem3:
What if PosResult is lost?



20-Nov-09 INF5150 – Unassailable IT-systems 17

IN
F 5150

KML problems (1)

1: File writing problems
– currently error dumped on console, and proceed as if no problem 

has arisen
not adequate: if the initialization fails to write on the file, the session 
should terminate, and double messages given (to console and user)



20-Nov-09 INF5150 – Unassailable IT-systems 18

IN
F 5150

1: File writing problems – New KML machine
Problem1:

File system errors



20-Nov-09 INF5150 – Unassailable IT-systems 19

IN
F 5150

1: File writing problems (2)

Low level java 
exception handling

Message on console
+ SMS to user



20-Nov-09 INF5150 – Unassailable IT-systems 20

IN
F 5150

KML problems (2)

2: The deferring of FoundNick_OK is motivated by 
wanting to handle one positioning at the time
– but the effect is the need to handle many defers

since the database produces users faster than PATS positions them
actually the #defers are in the order of #users2

– and decreased efficiency due to this defer-handling and since 
positioning requests may be done in parallel (possibly)

but in fact sending too many positioning requests very quickly seems 
to stress PATS such that sometimes requests are lost

– The optimal solution may be to introduce a little more protocol to 
sequentialize such that the Archive is explicitly asked to give the 
next user

rather than giving all users in a stream of messages
... but we keep to the defer solution – to show in detail how defer is



20-Nov-09 INF5150 – Unassailable IT-systems 21

IN
F 5150

JFTrace of the deferring KML



20-Nov-09 INF5150 – Unassailable IT-systems 22

IN
F 5150

KML problems (3) – needing timers

3: We have no guarantee that the PosRequest eventually 
results in a corresponding PosResult
– We shall have to guard the PosResult by a timer
– What then to do if the guarding timer expires?

Giving an SMS to the user for every non-positioned phone may be 
too many SMSes

– and we could cut off after a small number of such messages (say 3)
and then give a more general error message and terminate KML session

We could try again to position the failed one (one retry)
– What if the timer has expired, recovery has been done, and then 

the PosResult appears very late?
In our case this will have a cascading effect of PosResult appearing 
when it should not

– this actually becomes rather tricky! (will be covered later)



20-Nov-09 INF5150 – Unassailable IT-systems 23

IN
F 5150

3: Including the timer in KML

Problem3:
What if PosResult is lost?



20-Nov-09 INF5150 – Unassailable IT-systems 24

IN
F 5150

3: Giving up positioning after one re-try

Message on console
+ SMS to user



20-Nov-09 INF5150 – Unassailable IT-systems 25

IN
F 5150

Timer expires

To give PATS one more chance with this user
– we need to define a variable to control re-positioning

Having given up we must still cope with the PosResult
coming later
– This is more tricky than meets the eye since

when positioning is given up there is normally several FoundNick_OK
signals in the queue
and a late PosResult will follow those, but
that PosResult may come before any PosResult that is the result of 
new PosRequests

– Thus, we must make sure that the PosResult is actually matched 
with the right nickname

We need to check the static id of the PosResult with that of the most 
recent PosRequest



20-Nov-09 INF5150 – Unassailable IT-systems 26

IN
F 5150

Checking the static id of the PosResult

parsepos is extended 
to find STATICID, too

checking the received 
position against 
current request

should have been 
guarded by try/catch



20-Nov-09 INF5150 – Unassailable IT-systems 27

IN
F 5150

KML problems (4 & 5)

4: Default transitions of WaitMoreUsers
– PosResult and Sms are not handled

Sms cannot come to KML => 
– internal error, handled on enclosing level

PosResult should (normally) not come => 
– internal sequencing error, give message on console and ignore signal

5: Default transitions of WaitPosition
– There are non-KML signals that should be covered (as Sms)

we will cover that on enclosing level



20-Nov-09 INF5150 – Unassailable IT-systems 28

IN
F 5150

4: PosResult received at WaitMoreUsers

here

Internal error and no 
obvious reason to 
send Sms to user



20-Nov-09 INF5150 – Unassailable IT-systems 29

IN
F 5150

4&5: Problems best solved on ICUprocess level

The unexpected Sms signal
– Neither KML, Hotpos or Register cater for receiving Sms
– ...but they do not need to since Sms is always handled by 

ICUcontroller by creating a new ICUprocess
true, but will it always be that way?

Covering the unexpected also makes the software more 
robust for the future
The normal situation being that Sms will not occur in 
ICUprocess it may be handled on its top level



20-Nov-09 INF5150 – Unassailable IT-systems 30

IN
F 5150

The modified ICUprocess

Internal error and no 
obvious reason to 
send Sms to user



20-Nov-09 INF5150 – Unassailable IT-systems 31

IN
F 5150

The exceptional

Data may have strange syntax or values
– We have looked at data checks for ICUcontroller

An unexpected signal arrives
– we explicitly describe every conceivable transition
– We have looked at this for ICUprocess’KML

No signal arrives
– we guard our protocols/services with timers (ICUprocess’KML)

Security issues
– authentication + logging + statistics
– Check for registration in ICUprocess’Hotpos

Availability issues
– self tests (we shall improve the Archive)



20-Nov-09 INF5150 – Unassailable IT-systems 32

IN
F 5150

Services revisited

Hotpos
– Only registered users should be able to position others
– Positioning must be accepted by the positioned user

for the sake of showing more advance protocol for authentication

KML
– will not get the same full treatment

because asking every registered user is too tedious
– This shows that a ”buddy group” concept probably needs to be 

introduced to continue to offer KML service

Register
– will of course not require that users are registered!



20-Nov-09 INF5150 – Unassailable IT-systems 33

IN
F 5150

Hotpos revisited

anybody can 
position themselves

the positioned 
person will be asked 

to accept or reject

the positioned must 
accept positioning 
by a specific user



20-Nov-09 INF5150 – Unassailable IT-systems 34

IN
F 5150

Problems when Trine should accept Oystein

We need to know that Trine really accepts Oystein and 
not somebody else
– we need to connect Trine’s response to Oystein’s session

Trine’s response is an Sms and that will in our design 
spawn another session!
– which may not be a bad idea!

Let us make a new service – a yesno service
– The yesno service will take an Sms with the following syntax:

”yes nickname” or ”no nickname”
– The yesno service will send a signal to the session identified by 

the nickname
Accept_positioning or Reject_positioning depending on yes/no



20-Nov-09 INF5150 – Unassailable IT-systems 35

IN
F 5150

Hotpos in detail (1) two sessions!



20-Nov-09 INF5150 – Unassailable IT-systems 36

IN
F 5150

Hotpos in detail (2)
check oystein reg’d

find trine

trine accepts oystein



20-Nov-09 INF5150 – Unassailable IT-systems 37

IN
F 5150

Hotpos state machine in ICUB This will change

the rest will remain stable



20-Nov-09 INF5150 – Unassailable IT-systems 38

IN
F 5150

Hotpos in ICUC



20-Nov-09 INF5150 – Unassailable IT-systems 39

IN
F 5150

Hotpos – the new features

check oystein reg’d

find trine

trine accepts oystein

response is 
timer guarded



20-Nov-09 INF5150 – Unassailable IT-systems 40

IN
F 5150

New internal signals



20-Nov-09 INF5150 – Unassailable IT-systems 41

IN
F 5150

New communication path must be added

intra icuproc
communication



20-Nov-09 INF5150 – Unassailable IT-systems 42

IN
F 5150

Adding the yesno service



20-Nov-09 INF5150 – Unassailable IT-systems 43

IN
F 5150

The yesno service
decided not to check for 

registration due to possible 
reuse of the utility service



20-Nov-09 INF5150 – Unassailable IT-systems 44

IN
F 5150

Hotpos – more issues

sabotage

fake positive answer

guarding external 
communication 

with timer

rejected positioning



20-Nov-09 INF5150 – Unassailable IT-systems 45

IN
F 5150

Points to make

trivial additions to the Archive
– finding the registered username from static id

n+1
– new signals introduced means new signals to cope with 

everywhere

stability for parts of the state machine
– emphasizing that a state is enough to determine the history

services that use other services
– Hotpos uses yes-no service
– therefore we need new connection (and new ports) between 

icuproc and contr



20-Nov-09 INF5150 – Unassailable IT-systems 46

IN
F 5150

More points to make

Guarding the external communication with a timer
– WaitAccept where the positioning must be confirmed

what about yes-no service?
– out of protocol – we must check on receiving side that the yes-no 

has the appropriate static id
since otherwise anybody (or even Oystein himself) could just send a 
”yes oystein” in place of the reply from Trine

– also a reject must be checked against the static id
since otherwise anybody could just send a ”no oystein” in place of the 
reply from Trine!

– we will not require that yes-no needs registration
it is a utility, and may be used more freely at a later stage



20-Nov-09 INF5150 – Unassailable IT-systems 47

IN
F 5150

The exceptional applied to new Hotpos

Data may have strange syntax or values
– checking static ids of the accept/reject messages

An unexpected signal arrives
– We should probably gone through the new signals everywhere

especially the accept and reject signals

No signal arrives
– we guard our external communication with timers (WaitAccept)

Security issues
– authentication (+ logging + statistics)
– Check that user is registered
– Check expected static id

prevents faked positive acceptance or negative service sabotage
– Denial of service

keep faking will give resetting of the timer



20-Nov-09 INF5150 – Unassailable IT-systems 48

IN
F 5150

n+1

When we add functionality, we add signals
– and those added signals should be covered in all states
– in ICUC this has not been done yet!

We have added external legal services yes and no
– These services may produce internal signals Accept_positioning

or Reject_positioning to other ICUprocesses
– Those services may not be ready for those inputs!

if yes/no has been sent for no purpose or the nickname is misspelled
– and the misspelled person really has a service going (rather improbable)



20-Nov-09 INF5150 – Unassailable IT-systems 49

IN
F 5150

Hotpos + yes (resulting in a default transition)

competing initiatives 
and yes is really wrong



20-Nov-09 INF5150 – Unassailable IT-systems 50

IN
F 5150

Hotpos + yes (in detail)

this signal is 
not defined and 
default is used



20-Nov-09 INF5150 – Unassailable IT-systems 51

IN
F 5150

Misplaced Internal Signals

In Hotpos we only expect 
Accept_positioning or 

Reject_positioning here



20-Nov-09 INF5150 – Unassailable IT-systems 52

IN
F 5150

No capture of InternalSignal on top level



20-Nov-09 INF5150 – Unassailable IT-systems 53

IN
F 5150

Using the yes/no service

Normal (sd ICUC’Hotpos):
– oystein asks ”hotpos trine”
– trine accepts (or rejects) by saying ”yes oystein” or ”no oystein”

Exceptional 1(sd ICUC’robust2):
– oystein positions himself by ”hotpos”
– trine for no reason concurrently says ”yes oystein”

Exceptional 2:
– oyvind asks ”hotpos trine”
– trine misreads oyvind’s nick and says ”yes oystein”

trine gets no message that her supposed acceptance fails!
oyvind will time out waiting for trine’s approval

– Possibly we should need double acknowledgment protocol
trine should be confirmed that her acceptance succeeded?!
or she should get an error message back when not acknowledged



20-Nov-09 INF5150 – Unassailable IT-systems 54

IN
F 5150

Protocol changes in detail (sequence diagrams)

Internal error on console

Missing 
acknowledgement 

reported



20-Nov-09 INF5150 – Unassailable IT-systems 55

IN
F 5150

Protocol changes (2)

Internal Signal??

Timeout



20-Nov-09 INF5150 – Unassailable IT-systems 56

IN
F 5150

Protocol changes (3) – the normal Hotpos



20-Nov-09 INF5150 – Unassailable IT-systems 57

IN
F 5150

Protocol changes (4) – the big view

acknowledge 
the accept

inform the 
positioned



20-Nov-09 INF5150 – Unassailable IT-systems 58

IN
F 5150

Implementing the new protocol (Hotpos)

Accept_ack

Reject_ack



20-Nov-09 INF5150 – Unassailable IT-systems 59

IN
F 5150

Implementing the new protocol (yesno)

Guarding with timer

Reject_ack

Accept_ack



20-Nov-09 INF5150 – Unassailable IT-systems 60

IN
F 5150

Implementing the new protocol (ICUprocess)

There is a problem!



20-Nov-09 INF5150 – Unassailable IT-systems 61

IN
F 5150

A story about history

Unexpected signals can be caught on outer levels
– but we want the net effect to be ignoring them after giving an error 

message
This can be done in UML with History states

History states assures that when returning through a 
history point into a submachine state, execution will return 
where it left off in there
– there are shallow and deep histories (one level, or all levels)

UML has history states, but JavaFrame has not!
– 1. implement history in JavaFrame? (not done yet)
– 2. let transition return into the state anyway? (will restart the state)
– 3. let transition end in a final state (terminating service which 

means that there is a way to perform denial of service)
– 4. flatten the outer level error transitions into the inner levels



20-Nov-09 INF5150 – Unassailable IT-systems 62

IN
F 5150

A lesson learned

What you have not checked, may not work
– We did not manage to check the Sms errors and therefore did not 

manage to discover the history problem
What is defined in a standard, may not be implemented
– History states are found in UML 2, but are not implemented in 

JavaFrame
It is not always obvious what is the optimal solution
– 1. Implementing History states in JavaFrame

good for the future, but time-consuming now
– 2. Restart the state

will also restart the service and that is not in general attractive
– 3. Terminate

simple solution that actually hurts an innocent user
– 4. Flatten the transitions down

not very elegant, but requires only finite time to do
not very future-oriented



20-Nov-09 INF5150 – Unassailable IT-systems 63

IN
F 5150

Availability

Availability
– That authorized users can get the services they want when they 

want them

It may be too late to check the availability when the 
service is being asked for
– It may be necessary to check regularly regardless of demand

External resources upon which the service depends
– should be checked regularly

Internal resources
– may be trusted as they may only be divisions of the program
– may be checked if they involve external resource (like network)



20-Nov-09 INF5150 – Unassailable IT-systems 64

IN
F 5150

External resources of the ICU system

PATS

Database



20-Nov-09 INF5150 – Unassailable IT-systems 65

IN
F 5150

PATS

The connection to PATS is controlled by the IFI lower 
level software
– This is not always enough to make sure that PATS really works 

the way it is expected for our purposes

In a normal situation there will be frequent requests to 
PATS and malfunction would be reported through the 
robustness means that we have already applied
– If PATS connection is dead, nothing would reach our program

Extra liveness checks would actually cost money (for 
commercial utilization of PATS)
For ICU we decide not to introduce extra liveness checks 
against PATS



20-Nov-09 INF5150 – Unassailable IT-systems 66

IN
F 5150

IFIORA – the IFI Oracle database server

IFIORA will also be invoked frequently and failure 
reported through the exception handling
– which should be improved from stack dump!

For the sake of demonstration we also include a liveness
check for IFIORA
– We assume that the exception handling implicit in jdbc will always 

capture availability exceptions
– An extra liveness check will be implemented through a regular 

timer-driven transition that performs a simple SQL-command
– An availability exception will be reported back to the calling 

service through a special internal error signal (DataError)
on which the service may react by issuing a message to the user

Many small cascading effects around in the model



20-Nov-09 INF5150 – Unassailable IT-systems 67

IN
F 5150

Archive – with added liveness timer

Timer start and 
stop as usual

CheckLiveness if there 
is one minute without 

database action



20-Nov-09 INF5150 – Unassailable IT-systems 68

IN
F 5150

CheckLiveness
/* Liveness check by performing the simplest kind of SQL command */
try {

Statement stmt = csm.con.createStatement();
String theQuery = "SELECT COUNT(*) FROM gsmuser";
ResultSet r = stmt.executeQuery(theQuery);

} catch (Exception e) {
System.err.println("ICU'Archive: Liveness check fails! Reconnecting!");
try {

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Properties props = new Properties();

props.put("user", csm.oracleAccount);
props.put("password", csm.oraclePasswd);

String url = "jdbc.:oracle:thin:@delphinium.ifi.uio.no:1521:IFIORA";
csm.con = DriverManager.getConnection(url, props);

} catch (SQLException ee) {
System.err.println("ICU'Archive: Error when reconnecting!");

}
}

cheap SQL 
statement

must reconnect 
to work again



20-Nov-09 INF5150 – Unassailable IT-systems 69

IN
F 5150

FindStaticIdent
/* look in gsmusers for static id */
try {

Statement stmt = csm.con.createStatement();
String theQuery = "SELECT * FROM gsmuser WHERE staticid = '"+ sig.find_id + "'";
ResultSet r = stmt.executeQuery(theQuery);
if (r.next())
{ /* Static id found*/

output(new FoundStaticId_OK(r.getString("nickname"),sig.find_id,sig.static_id),
csm.to_contr,csm);

}
else
{ /* Static id not found */

output(new FoundStaticId_NOK(sig.find_id,sig.static_id),csm.to_contr,csm);
}

} catch (Exception e) {
System.err.println("ICU'Archive: Error when Selecting staticid from gsmuser");
output(

new DataError("ICU'Archive: Error when Selecting staticid from gsmuser",
sig.static_id), csm.to_contr, csm);

}

Double error messages: to the 
console and the calling service



20-Nov-09 INF5150 – Unassailable IT-systems 70

IN
F 5150

Catching the DataError message in Hotpos

Data err 1

Data err 2Data err 3



20-Nov-09 INF5150 – Unassailable IT-systems 71

IN
F 5150

The robustification summarized

Data may have strange syntax or values
– We have looked at data checks for ICUcontroller

An unexpected signal arrives
– we explicitly describe every conceivable transition
– We will look at this again for ”n+1” situation

No signal arrives
– we guard our protocols/services with timers

Security issues
– authentication + logging + statistics
– Check for registration in ICUprocess’Hotpos

Availability issues
– liveness tests (Archive)



20-Nov-09 INF5150 – Unassailable IT-systems 72

IN
F 5150

What more robustification could we have done?

KML and yesno are still without authentication
– in practice we would need a ”buddy” concept

PATS is not checked
– we could have covered sending Sms/PosRequest
– probably best on lower level, but would cause some problems

We have not tested every peculiar (but imagined) 
situation
– because it is difficult/tedious to do
– will require a very precise testing environment

Probably should have had one more iteration of cleaning 
up the diagrams
– aesthetics is important for understanding


	Robustness – �the art of preparing for the unexpected
	The exceptional
	ICUcontroller: the exceptional
	Handling an error or exceptional situation
	ICUcontroller’s GenerateSession
	Checking the data invariant
	Error recovery for the static id re-use
	The robust ICUcontroller’s GenerateSession
	Modified Composite Structure
	ICUProcess: the exceptional
	Explicit transitions please!
	ICUprocess (as of ICUA)
	ParseSms
	ParseSms robustified (1)
	ParseSms robustified (2)
	KML service
	KML problems (1)
	1: File writing problems – New KML machine
	1: File writing problems (2)
	KML problems (2)
	JFTrace of the deferring KML
	KML problems (3) – needing timers
	3: Including the timer in KML
	3: Giving up positioning after one re-try
	Timer expires
	Checking the static id of the PosResult
	KML problems (4 & 5)
	4: PosResult received at WaitMoreUsers
	4&5: Problems best solved on ICUprocess level
	The modified ICUprocess
	The exceptional
	Services revisited
	Hotpos revisited
	Problems when Trine should accept Oystein
	Hotpos in detail (1)
	Hotpos in detail (2)
	Hotpos state machine in ICUB
	Hotpos in ICUC
	Hotpos – the new features
	New internal signals
	New communication path must be added
	Adding the yesno service
	The yesno service
	Hotpos – more issues
	Points to make
	More points to make
	The exceptional applied to new Hotpos
	n+1
	Hotpos + yes (resulting in a default transition)
	Hotpos + yes (in detail)
	Misplaced Internal Signals
	No capture of InternalSignal on top level
	Using the yes/no service
	Protocol changes in detail (sequence diagrams)
	Protocol changes (2)
	Protocol changes (3) – the normal Hotpos
	Protocol changes (4) – the big view
	Implementing the new protocol (Hotpos)
	Implementing the new protocol (yesno)
	Implementing the new protocol (ICUprocess)
	A story about history
	A lesson learned
	Availability
	External resources of the ICU system
	PATS
	IFIORA – the IFI Oracle database server
	Archive – with added liveness timer
	CheckLiveness
	FindStaticIdent
	Catching the DataError message in Hotpos
	The robustification summarized
	What more robustification could we have done?

