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Abstract
A wide range of problems can be modelled as constraint satisfaction problems (CSPs), that is,

a set of constraints that must be satisfied simultaneously. Constraints can either be represented
extensionally, by explicitly listing allowed combinations of values, or implicitly, by special-purpose
algorithms provided by a solver.

Such implicitly represented constraints, known as global constraints, are widely used; indeed,
they are one of the key reasons for the success of constraint programming in solving real-world prob-
lems. In recent years, a variety of restrictions on the structure of CSP instances have been shown
to yield tractable classes of CSPs. However, most such restrictions fail to guarantee tractability
for CSPs with global constraints. We therefore study the applicability of structural restrictions to
instances with such constraints.

We show that when the number of solutions to a CSP instance is bounded in key parts of the
problem, structural restrictions can be used to derive new tractable classes. Furthermore, we show
that this result extends to combinations of instances drawn from known tractable classes, as well
as to CSP instances where constraints assign costs to satisfying assignments.

1. Introduction

Constraint programming (CP) is widely used to solve a variety of practical problems such as planning
and scheduling [vHK06, Wal96], and industrial configuration [ADF+11, HDL11]. Constraints can
either be represented explicitly, by a table of allowed assignments, or implicitly, by specialized
algorithms provided by the constraint solver. These algorithms may take as a parameter a description
that specifies exactly which kinds of assignments a particular instance of a constraint should allow.
Such implicitly represented constraints are known as global constraints, and a lot of the success of CP
in practice has been attributed to solvers providing global constraints [RvBW06, GJM06, WNS97].

The theoretical properties of constraint problems, in particular the computational complex-
ity of different types of problem, have been extensively studied and quite a lot is known about
what restrictions on the general constraint satisfaction problem are sufficient to make it tractable
[ADG+11, BJK05, CJG08, GLS00, Gro07, Mar10b]. In particular, many structural restrictions, that
is, restrictions on how the constraints in a problem interact, have been identified and shown to yield
tractable classes of CSP instances [GLS02, GM06, Mar10b]. However, much of this theoretical work
has focused on problems where each constraint is explicitly represented, and most known structural
restrictions fail to yield tractable classes for problems with global constraints, even when the global
constraints are fairly simple [KEKM08].

Theoretical work on global constraints has to a large extent focused on developing efficient algo-
rithms to achieve various kinds of local consistency for individual constraints. This is generally done
by pruning from the domains of variables those values that cannot lead to a satisfying assignment
[BHHW07, SS11]. Another strand of research has explored conditions that allow global constraints
to be replaced by collections of explicitly represented constraints [BKN+10]. These techniques al-
low faster implementations of algorithms for individual constraints, but do not shed much light on
the complexity of problems with multiple overlapping global constraints, which is something that
practical problems frequently require.
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As such, in this paper we investigate the properties of explicitly represented constraints that
allow structural restrictions to guarantee tractability. Identifying such properties will allow us to
find global constraints that also possess them, and lift structural restrictions to instances with such
constraints.

As discussed in [CG10], when the constraints in a family of problems have unbounded arity,
the way that the constraints are represented can significantly affect the complexity. Previous work
in this area has assumed that the global constraints have specific representations, such as prop-
agators [GJ08], negative constraints [CGH09], or GDNF/decision diagrams [CG10], and exploited
properties particular to that representation. In contrast, we will use a definition of global constraints
that allows us to discuss different representations in a uniform manner. Armed with this definition,
we obtain results that rely on a relationship between the size of a global constraint and the number
of its satisfying assignments.

Furthermore, as our definition is general enough to capture arbitrary problems in NP, we demon-
strate how our results can be used to decompose a constraint problem into smaller constraint prob-
lems (as opposed to individual constraints), and when such decompositions lead to tractability.
The results that we obtain on this topic extend previous research by Cohen and Green [CG06]. In
addition to being more general, our results arguably use simpler theoretical machinery.

Finally, we show how our results can be extended to weighted CSP [GGS09, dGSV06], that is,
CSP where constraints assign costs to satisfying assignments, and the goal is to find an optimal
solution.

Acknowledgements A preliminary version of this paper appeared in Proceedings of the 19th
International Conference on Principles and Practice of Constraint Programming (CP 2013).

2. Preliminaries

In this section, we define the basic concepts that we will use throughout the paper. In particular,
we give a precise definition of global constraints and of structural decompositions.

2.1 Global Constraints

Definition 2.1 (Variables and assignments) Let V be a set of variables, each with an associated
set of domain elements. We denote the set of domain elements (the domain) of a variable v by D(v).
We extend this notation to arbitrary subsets of variables, W , by setting D(W ) =

⋃
v∈W

D(v).

An assignment of a set of variables V is a function θ : V → D(V ) that maps every v ∈ V to an
element θ(v) ∈ D(v). We denote the restriction of θ to a set of variables W ⊆ V by θ|W . We also
allow the special assignment ⊥ of the empty set of variables. In particular, for every assignment θ,
we have θ|∅ = ⊥.

Definition 2.2 (Projection) Let Θ be a set of assignments of a set of variables V . The projection
of Θ onto a set of variables X ⊆ V is the set of assignments πX(Θ) = {θ|X | θ ∈ Θ}.

Note that when Θ = ∅ we have πX(Θ) = ∅, but when X = ∅ and Θ 6= ∅, we have πX(Θ) = {⊥}.

Definition 2.3 (Disjoint union of assignments) Let θ1 and θ2 be two assignments of disjoint
sets of variables V1 and V2, respectively. The disjoint union of θ1 and θ2, denoted θ1 ⊕ θ2, is the
assignment of V1 ∪ V2 such that (θ1 ⊕ θ2)(v) = θ1(v) for all v ∈ V1, and (θ1 ⊕ θ2)(v) = θ2(v) for all
v ∈ V2.

Global constraints have traditionally been defined, somewhat vaguely, as constraints without a
fixed arity, possibly also with a compact representation of the constraint relation. For example, in
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[vHK06] a global constraint is defined as “a constraint that captures a relation between a non-fixed
number of variables”.

Below, we offer a precise definition similar to the one in [BHHW07], where the authors define
global constraints for a domain D over a list of variables σ as being given intensionally by a function
D|σ| → {0, 1} computable in polynomial time. Our definition differs from this one in that we separate
the general algorithm of a global constraint (which we call its type) from the specific description.
This separation allows us a better way of measuring the size of a global constraint, which in turn
helps us to establish new complexity results.

Definition 2.4 (Global constraints) A global constraint type is a parameterized polynomial-time
algorithm that determines the acceptability of an assignment of a given set of variables.

Each global constraint type, e, has an associated set of descriptions, ∆(e). Each description
δ ∈ ∆(e) specifies appropriate parameter values for the algorithm e. In particular, each δ ∈ ∆(e)
specifies a set of variables, denoted by V(δ).

A global constraint e[δ], where δ ∈ ∆(e), is a function that maps assignments of V(δ) to the
set {0, 1}. Each assignment that is allowed by e[δ] is mapped to 1, and each disallowed assignment
is mapped to 0. The extension or constraint relation of e[δ] is the set of assignments, θ, of V(δ)
such that e[δ](θ) = 1. We also say that such assignments satisfy the constraint, while all other
assignments falsify it.

When we are only interested in describing the set of assignments that satisfy a constraint, and
not in the complexity of determining membership in this set, we will sometimes abuse notation by
writing θ ∈ e[δ] to mean e[δ](θ) = 1.

As can be seen from the definition above, a global constraint is not usually explicitly represented
by listing all the assignments that satisfy it. Instead, it is represented by some description δ and
some algorithm e that allows us to check whether the constraint relation of e[δ] includes a given
assignment. To stay within the complexity class NP, this algorithm is required to run in polynomial
time. As the algorithms for many common global constraints are built into modern constraint
solvers, we measure the size of a global constraint’s representation by the size of its description.

Example 2.5 (EGC) A very general global constraint type is the extended global cardinality con-
straint type [SS11]. This form of global constraint is defined by specifying for every domain element
a a finite set of natural numbers K(a), called the cardinality set of a. The constraint requires that
the number of variables which are assigned the value a is in the set K(a), for each possible domain
element a.

Using our notation, the description δ of an EGC global constraint specifies a function Kδ :
D(V(δ)) → P(N) that maps each domain element to a set of natural numbers. The algorithm
for the EGC constraint then maps an assignment θ to 1 if and only if, for every domain element
a ∈ D(V(δ)), we have that |{v ∈ V(δ) | θ(v) = a}| ∈ Kδ(a).

Example 2.6 (Table and negative constraints) A rather degenerate example of a a global con-
straint type is the table constraint.

In this case the description δ is simply a list of assignments of some fixed set of variables, V(δ).
The algorithm for a table constraint then decides, for any assignment of V(δ), whether it is included
in δ. This can be done in a time which is linear in the size of δ and so meets the polynomial time
requirement.

Negative constraints are complementary to table constraints, in that they are described by listing
forbidden assignments. The algorithm for a negative constraint e[δ] decides, for any assignment of
V(δ), whether whether it is not included in δ. Observe that disjunctive clauses, used to define
propositional satisfiability problems, are a special case of the negative constraint type, as they have
exactly one forbidden assignment.

We observe that any global constraint can be rewritten as a table or negative constraint. However,
this rewriting will, in general, incur an exponential increase in the size of the description.
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As can be seen from the definition above, a table global constraint is explicitly represented, and
thus equivalent to the usual notion of an explicitly represented constraint.

Definition 2.7 (CSP instance) An instance of the constraint satisfaction problem (CSP) is a pair
〈V,C〉 where V is a finite set of variables, and C is a set of global constraints such that for every
e[δ] ∈ C, V(δ) ⊆ V . In a CSP instance, we call V(δ) the scope of the constraint e[δ].

A classic CSP instance is one where every constraint is a table constraint.
A solution to a CSP instance P = 〈V,C〉 is an assignment θ of V which satisfies every global

constraint, i.e., for every e[δ] ∈ C we have θ|V(δ) ∈ e[δ]. We denote the set of solutions to P by
sol(P ).

The size of a CSP instance P = 〈V,C〉 is |P | = |V |+
∑
v∈V
|D(v)|+

∑
e[δ]∈C

|δ|.

To illustrate these definitions, consider the connected graph partition problem (CGP) [GJ79,
p. 209], formally defined below. Informally, the CGP is the problem of partitioning the vertices of
a graph into bags of a given size while minimizing the number of edges that span bags.

Problem 2.8 (Connected graph partition (CGP)) We are given an undirected and connected
graph 〈V,E〉, as well as α, β ∈ N. Can V be partitioned into disjoint sets V1, . . . , Vm with |Vi| ≤ α
such that the set of broken edges E′ = {{u, v} ∈ E | u ∈ Vi, v ∈ Vj , i 6= j} has cardinality β or less?

Example 2.9 (The CGP encoded with global constraints) Given a connected graph G =
〈V,E〉, α, and β, we build a CSP instance 〈A ∪ B,C〉 as follows. The set A will have a vari-
able v for every v ∈ V with domain D(v) = {1, . . . , |V |}, while the set B will have a boolean variable
e for every edge in E.

The set of constraints C will have an EGC constraint Cα on A with K(i) = {0, . . . , α} for every
1 ≤ i ≤ |V |. Likewise, C will have an EGC constraint Cβ on B with K(0) = {0, . . . , |E|} and
K(1) = {1, . . . , β}.

Finally, to connect A and B, the set C will have for every edge {u, v} ∈ E, with corresponding
variable e ∈ B, a table constraint on {u, v, e} requiring u 6= v → e = 1.

As an example, Figure 1 shows this encoding for the CGP on the graph C5, that is, a simple
cycle on five vertices.

This encoding follows the definition of Problem 2.8 quite closely, and can be done in polynomial
time.

2.2 Structural Restrictions

In recent years, there has been a flurry of research into identifying tractable classes of classic CSP
instances based on structural restrictions, that is, restrictions on the hypergraphs of CSP instances.
Below, we present and discuss a few representative examples. To present the various structural
restrictions, we will use the framework of width functions, introduced by Adler [Adl06].

Definition 2.10 (Hypergraph) A hypergraph 〈V,H〉 is a set of vertices V together with a set of
hyperedges H ⊆ P(V ).

Given a CSP instance P = 〈V,C〉, the hypergraph of P , denoted hyp(P ), has vertex set V
together with a hyperedge V(δ) for every e[δ] ∈ C.

Definition 2.11 (Tree decomposition) A tree decomposition of a hypergraph 〈V,H〉 is a pair
〈T, λ〉 where T is a tree and λ is a labelling function from nodes of T to subsets of V , such that

1. for every v ∈ V , there exists a node t of T such that v ∈ λ(t),

2. for every hyperedge h ∈ H, there exists a node t of T such that h ⊆ λ(t), and
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Figure 1: CSP encoding of the CGP on the graph C5.

3. for every v ∈ V , the set of nodes {t | v ∈ λ(t)} induces a connected subtree of T .

Definition 2.12 (Width function) Let G = 〈V,H〉 be a hypergraph. A width function on G is
a function f : P(V )→ R+ that assigns a positive real number to every nonempty subset of vertices
of G. A width function f is monotone if f(X) ≤ f(Y ) whenever X ⊆ Y .

Let 〈T, λ〉 be a tree decomposition of G, and f a width function on G. The f -width of 〈T, λ〉 is
max({f(λ(t)) | t node of T}). The f -width of G is the minimal f -width over all its tree decomposi-
tions.

In other words, a width function on a hypergraph G tells us how to assign weights to nodes of
tree decompositions of G.

Definition 2.13 (Treewidth) Let f(X) = |X|−1. The treewidth tw(G) of a hypergraph G is the
f -width of G.

Let G = 〈V,H〉 be a hypergraph, and X ⊆ V . An edge cover for X is any set of hyperedges
H ′ ⊆ H that satisfies X ⊆

⋃
H ′. The edge cover number ρ(X) of X is the size of the smallest edge

cover for X. It is clear that ρ is a width function.

Definition 2.14 ([Adl06, Chapter 2]) The generalized hypertree width hw(G) of a hypergraph
G is the ρ-width of G.

Next, we define a relaxation of hypertree width known as fractional hypertree width, introduced
by Grohe and Marx [GM06].
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Definition 2.15 (Fractional edge cover) Let G = 〈V,H〉 be a hypergraph, and X ⊆ V . A
fractional edge cover for X is a function γ : H → [0, 1] such that

∑
v∈h∈H

γ(h) ≥ 1 for every v ∈ X.

We call
∑
h∈H

γ(h) the weight of γ. The fractional edge cover number ρ∗(X) of X is the minimum

weight over all fractional edge covers for X. It is known that this minimum is always rational
[GM06].

Definition 2.16 The fractional hypertree width fhw(G) of a hypergraph G is the ρ∗-width of G.

For a class of hypergraphs H and a notion of width α, we write α(H) for the maximal α-width
over the hypergraphs in H. If this is unbounded we write α(H) =∞; otherwise α(H) <∞.

All the above restrictions can be used to guarantee tractability for classes of CSP instances where
all constraints are table constraints.

Theorem 2.17 ([DKV02, GLS02, GM06]) Let H be a class of hypergraphs. For every α ∈
{hw, fhw}, any class of classic CSP instances whose hypergraphs are in H is tractable if α(H) <∞.

To go beyond fractional hypertree width, Marx [Mar10b, Mar09] recently introduced the concept
of submodular width. This concept uses a set of width functions satisfying a condition (submodu-
larity), and considers the f -width of a hypergraph for every such function f .

Definition 2.18 (Submodular width function) Let G = 〈V,H〉 be a hypergraph. A width
function f on G is submodular if for every setX,Y ⊆ V , we have f(X)+f(Y ) ≥ f(X∩Y )+f(X∪Y ).

Definition 2.19 (Submodular width) Let G be a hypergraph. The submodular width subw(G)
of G is the maximum f -width of G taken over all monotone submodular width functions f on G.

For a class of hypergraphs H, we write subw(H) for the maximal submodular width over the
hypergraphs in H. If this is unbounded we write subw(H) =∞; otherwise subw(H) <∞.

Unlike for fractional hypertree width and every other structural restriction discussed so far, the
running time of the algorithm given by Marx for classic CSP instances with bounded submodular
width has an exponential dependence on the number of vertices in the hypergraph of the instance.
The class of classic CSP instances with bounded submodular width is therefore not tractable. How-
ever, this class is what is called fixed-parameter tractable [DF99, FG06].

Definition 2.20 (Fixed-parameter tractable) A parameterized problem instance is a pair 〈k, P 〉,
where P is a problem instance, such as a CSP instance, and k ∈ N a parameter.

Let S be a class of parameterized problem instances. We say that S is fixed-parameter tractable
(in FPT) if there is a function f of one argument, as well as a constant c, such that every problem
〈k, P 〉 ∈ S can be solved in time O(f(k)× |P |c).

The function f can be arbitrary, but must only depend on the parameter k. For CSP instances, a
natural parameterization is by the size of the hypergraph of an instance, measured by the number of
vertices. Since the hypergraph of an instance has a vertex for every variable, for every CSP instance
P = 〈V,C〉 we consider the parameterized instance 〈|V |, P 〉.

Theorem 2.21 ([Mar09]) Let H be a class of hypergraphs. If subw(H) <∞, then a class of classic
CSP instances whose hypergraphs are in H is in FPT.

The three structural restrictions that we have just presented form a hierarchy [GM06, Mar09]:
For every hypergraph G, subw(G) ≤ fhw(G) ≤ hw(G).

As the example below demonstrates, Theorem 2.17 does not hold for CSP instances with arbitrary
global constraints, even if we have a fixed, finite domain.
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Example 2.22 The NP-complete problem of 3-colourability [GJ79] is to decide, given a graph
〈V,E〉, whether the vertices V can be coloured with three colours such that no two adjacent vertices
have the same colour.

We may reduce this problem to a CSP with EGC constraints (cf. Example 2.5) as follows:
Let V be the set of variables for our CSP instance, each with domain {r, g, b}. For every edge
〈v, w〉 ∈ E, we post an EGC constraint with scope {v, w}, parameterized by the function K such
that K(r) = K(g) = K(b) = {0, 1}. Finally, we make the hypergraph of this CSP instance have
low width by adding an EGC constraint with scope V parameterized by the function K ′ such that
K ′(r) = K ′(g) = K ′(b) = {0, . . . , |V |}. This reduction clearly takes polynomial time, and the
hypergraph G of the resulting instance has hw(G) = fhw(G) = subw(G) = 1.

As the constraint with scope V allows all possible assignments, any solution to this CSP is also
a solution to the 3-colourability problem, and vice versa.

Likewise, Theorem 2.21 does not hold for CSP instances with arbitrary global constraints if we
allow the variables unbounded domain size, that is, change the above example to k-colourability.
With that in mind, in the rest of the paper we will identify properties of extensionally represented
constraints that these structural restrictions exploit to guarantee tractability. Then, we are going to
look for restricted classes of global constraints that possess these properties. To do so, we will use
the following definitions.

Definition 2.23 (Constraint catalogue) A constraint catalogue is a set of global constraints. A
CSP instance 〈V,C〉 is said to be over a constraint catalogue Γ if for every e[δ] ∈ C we have e[δ] ∈ Γ.

Definition 2.24 (Restricted CSP class) Let Γ be a constraint catalogue, and let H be a class
of hypergraphs. We define CSP(H,Γ) to be the class of CSP instances over Γ whose hypergraphs
are in H.

Definition 2.24 allows us to discuss classic CSP instances alongside instances with global con-
straints. Let Ext be the constraint catalogue containing all table global constraints. The classic CSP
instances are then precisely those that are over Ext. In particular, we can now restate Theorems 2.17
and 2.21 as follows.

Theorem 2.25 Let H be a class of hypergraphs. For every α ∈ {hw, fhw}, the class of CSP instances
CSP(H,Ext) is tractable if α(H) <∞. Furthermore, if subw(H) <∞ then CSP(H,Ext) is in FPT.

3. Properties of Extensional Representation

We are going to start our investigation by considering fractional hypertree width in more detail. To
obtain tractability for classic CSP instances of bounded fractional hypertree width, Grohe and Marx
[GM06] use a bound on the number of solutions to a classic CSP instance, and show that this bound
is preserved when we consider parts of a CSP instance. The following definition formalizes what we
mean by “parts”, and is required to state the algorithm that Grohe and Marx use in their paper.

Definition 3.1 (Constraint projection) Let e[δ] be a constraint. The projection of e[δ] onto a
set of variables X ⊆ V(δ) is the constraint pjX(e[δ]) such that µ ∈ pjX(e[δ]) if and only if there
exists θ ∈ e[δ] with θ|X = µ.

For a CSP instance P = 〈V,C〉 and X ⊆ V we define pjX(P ) = 〈X,C ′〉, where C ′ is the least
set containing for every e[δ] ∈ C such that X ∩ V(δ) 6= ∅ the constraint pjX∩V(δ)(e[δ]).

Their algorithm is given as Algorithm 1, and is essentially the usual recursive search algorithm
for finding all solutions to a CSP instance by considering smaller and smaller sub-instances using
constraint projections.

To show that Algorithm 1 does indeed find all solutions, we will use the following property of
constraint projections.
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Algorithm 1 Enumerate all solutions of a CSP instance
procedure EnumSolutions(CSP instance P = 〈V,C〉) . Returns sol(P )

Solutions← ∅
if V = ∅ then

return {⊥} . The empty assignment
else

w ← chooseVar(V ) . Pick a variable from V
Θ = EnumSolutions(pjV−{w}(P ))
for θ ∈ Θ do

for a ∈ D(w) do
if θ ∪ 〈w, a〉 is a solution to P then

Solutions.add(θ ∪ 〈w, a〉)
end if

end for
end for

end if
return Solutions

end procedure

Lemma 3.2 Let P = 〈V,C〉 be a CSP instance. For every X ⊆ V , we have sol(pjX(P )) ⊇
πX(sol(P )).

Proof Given P = 〈V,C〉, let X ⊆ V be arbitrary, and let C ′ = {e[δ] ∈ C | X ∩ V(δ) 6= ∅}. For
every θ ∈ sol(P ) and constraint e[δ] ∈ C ′ we have that θ|V(δ) ∈ e[δ] since θ is a solution to P .
By Definition 3.1, it follows that for every e[δ] ∈ C ′, θ|X∩V(δ) ∈ pjX∩V(δ)(e[δ]). Since the set of
constraints of pjX(P ) is the least set containing for each e[δ] ∈ C ′ the constraint pjX∩V(δ)(e[δ]), we
have θ|X ∈ sol(pjX(P )), and hence sol(pjX(P )) ⊇ πX(sol(P )). Since X was arbitrary, the claim
follows.

Theorem 3.3 (Correctness of Algorithm 1) For every CSP instance P , EnumSolutions(P ) =
sol(P ).

Proof The proof is by induction on the set of variables V in P . For the base case, if V = ∅, the
empty assignment is the only solution.

Otherwise, choose a variable w ∈ V , and let X = V − {w}. By induction, we can assume that
EnumSolutions(pjX(P )) = sol(pjX(P )). Since for every θ ∈ sol(P ) there exists a ∈ D(w) such that
θ = θ|X∪〈w, a〉, and furthermore θ|X ∈ πX(sol(P )), it follows by Lemma 3.2 that θ|X ∈ sol(pjX(P )).
Since Algorithm 1 checks every assignment of the form µ ∪ 〈w, a〉 for every µ ∈ sol(pjX(P )) and
a ∈ D(w), it follows that EnumSolutions(P ) = sol(P ).

The time required for this algorithm depends on three key factors, which we are going to enu-
merate and discuss below. Let

1. s(P ) be the maximum of the number of solutions to each of the instances pjV−{w}(P ),

2. c(P ) be the maximum time required to check whether an assignment is a solution to P , and

3. b(P ) be the maximum time required to construct any instance pjV−{w}(P ).

There are |V | calls to EnumSolutions. For each call, we need b(P ) time to construct the
projection, while the double loop takes at most s(P ) × |D(w)| × c(P ) time. Therefore, letting
d = max({|D(w)| | w ∈ V }), the running time of Algorithm 1 is bounded by O

(
|V | × (s(P ) × d ×

c(P ) + b(P ))
)
.
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Since constructing the projection of a classic CSP instance can be done in polynomial time, and
likewise checking that an assignment is a solution, the whole algorithm runs in polynomial time if
s(P ) is a polynomial in the size of P . For fractional hypertree width, Grohe and Marx show the
following.

Lemma 3.4 ([GM06]) A classic CSP instance P has at most |P |fhw(hyp(P )) solutions.

Since fractional hypertree width is a monotone width function, it follows that for any instance
P = 〈V,C〉 and X ⊆ V , fhw(hyp(pjX(P ))) ≤ fhw(hyp(P )). Therefore, for classic CSP instances of
bounded fractional hypertree width s(P ) is indeed polynomial in |P |.

3.1 CSP Instances with Few Solutions in Key Places

Having few solutions for every projection of a CSP instance is thus a property that makes fractional
hypertree width yield tractable classes of classic CSP instances. More importantly, we have shown
that this property allows us to find all solutions to a CSP instance P , even with global constraints, if
we can build arbitrary projections of P in polynomial time. In other words, with these two conditions
we should be able to reduce instances with global constraints to classic instances in polynomial time.

However, on reflection there is no reason why we should need few solutions for every projection.
Instead, consider the following reduction.

Definition 3.5 (Partial assignment checking) A global constraint catalogue Γ allows partial
assignment checking if for any constraint e[δ] ∈ Γ we can decide in polynomial time whether a
given assignment θ to a set of variables W ⊆ V(δ) is contained in an assignment that satisfies e[δ],
i.e. whether there exists µ ∈ e[δ] such that θ = µ|W .

As an example, a catalogue that contains arbitrary EGC constraints (cf. Example 2.5) does not
satisfy Definition 3.5, since checking whether an arbitrary EGC constraint has a satisfying assignment
is NP-hard [QLOvBG04]. On the other hand, a catalogue that contains only EGC constraints whose
cardinality sets are intervals does satisfy Definition 3.5 [Rég96].

If a catalogue Γ satisfies Definition 3.5, we can for any constraint e[δ] ∈ Γ build arbitrary
projections of it, that is, construct the global constraint pjX(e[δ]) for any X ⊆ V(δ), in polynomial
time.

Definition 3.6 (Intersection variables) Let 〈V,C〉 be a CSP instance. The set of intersection
variables of any constraint e[δ] ∈ P is iv(δ) =

⋃
{V(δ) ∩ V(δ′) | e′[δ′] ∈ C − {e[δ]}}.

Definition 3.7 (Table constraint induced by a global constraint) Let P = 〈V,C〉 be a CSP
instance. For every e[δ] ∈ C, let µ∗ be the assignment to V(δ)− iv(δ) that assigns a special value ∗
to every variable. The table constraint induced by e[δ] is ic(e[δ]) = e′[δ′], where V(δ′) = V(δ), and δ′
contains for every assignment θ ∈ sol(pjiv(δ)(P )) the assignment θ ⊕ µ∗.

If every constraint in a CSP instance P = 〈V,C〉 allows partial assignment checking, then building
ic(e[δ]) for any e[δ] ∈ C can be done in polynomial time when |sol(pjX(P ))| is itself polynomial in
the size of P for every subset X of iv(δ). To do so, we can invoke Algorithm 1 on the instance
pjiv(δ)(P ). The definition below expresses this idea.

Definition 3.8 (Sparse intersections) A class of CSP instances P has sparse intersections if
there exists a constant c such that for every constraint e[δ] in any instance P ∈ P, we have that for
every X ⊆ iv(δ), |sol(pjX(P ))| ≤ |P |c.

If a class of instances P has sparse intersections, and the instances are all over a constraint
catalogue that allows partial assignment checking, then we can for every constraint e[δ] of any
instance from P construct ic(e[δ]) in polynomial time. While this definition considers the instance
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as a whole, one special case of it is the case where every constraint has few solutions in the size of
its description, that is, there is a constant c and the constraints are drawn from a catalogue Γ such
that for every e[δ] ∈ Γ, we have that |{µ | µ ∈ e[δ]}| ≤ |δ|c.

Note that the problem of checking whether a class of CSP instances satisfies Definition 3.8
for a given c is, in general, hard. To see this, consider the special case of checking whether a
global constraint e[δ] has fewer than |δ|c satisfying assignments. If we could decide this problem in
polynomial time, then we could find the exact number of satisfying assignments for e[δ] by binary
search. However, as we discuss in Section 4, arbitrary problems in NPcan be viewed as (classes
of) global constraints. The problem of counting solutions to problems in NP, however, is in the
complexity class #P [Val79a], and is believed to be hard [Tod91]. Also, the problem of finding
the number of solutions to a given instance of 2SAT, that is, SAT where every clause contains at
most two literals, is complete for #P [Val79b], even though solving such an instance can be done
in polynomial time. In other words, the above problem is hard even if e[δ] comes from a catalogue
that satifies Definition 3.5.

Despite such bad news, however, it is not always difficult to recognise constraints with polyno-
mially many satisfying assignments. A trivial example would be table constraints. For a less trivial
example, consider the constraint Cβ from Example 2.9.

Armed with these definitions, we can now state the following result.

Theorem 3.9 Let P be a class of CSP instances over a catalogue that allows partial assignment
checking. If P has sparse intersections, then we can in polynomial time reduce any instance P ∈ P
to a classic CSP instance PCL with hyp(P ) = hyp(PCL), such that PCL has a solution if and only if
P does.

Proof Let P = 〈V,C〉 be an instance from such a class P. For each e[δ] ∈ C, PCL will contain
the table constraint ic(e[δ]) from Definition 3.7. Since P is over a catalogue that allows partial
assignment checking, and P has sparse intersections, computing ic(e[δ]) can be done in polynomial
time by invoking Algorithm 1 on pjiv(δ)(P ).

It is clear that hyp(P ) = hyp(PCL). All that is left to show is that PCL has a solution if and only
if P does. Let θ be a solution to P = 〈V,C〉. For every e[δ] ∈ C, we have that θ|iv(δ) ∈ pjiv(δ)(P )

by Definitions 3.1 and 3.6, and the assignment µ that assigns the value θ(v) to each v ∈
⋃

e[δ]∈C

iv(δ),

and ∗ to every other variable is therefore a solution to PCL.
In the other direction, if θ is a solution to PCL, then θ satisfies ic(e[δ]) for every e[δ] ∈ C.

By Definition 3.7, this means that θ|iv(δ) ∈ sol(pjiv(δ)(P )), and by Definition 3.1, there exists an
assignment µe[δ] with µe[δ]|iv(δ) = θ|iv(δ) that satisfies e[δ]. By Definition 3.6, the variables not in
iv(δ) do not occur in any other constraint in P , so we can combine all the assignments µe[δ] to form
a solution µ to P such that for e[δ] ∈ C and v ∈ V(δ) we have µ(v) = µe[δ](v).

From Theorem 3.9, we get tractable and fixed-parameter tractable classes of CSP instances with
global constraints.

Corollary 3.10 Let H be a class of hypergraphs, and Γ a catalogue that allows partial assign-
ment checking. If CSP(H,Γ) has sparse intersections, then CSP(H,Γ) is tractable or in FPT if
CSP(H,Ext) is.

Proof Let H and Γ be given. By Theorem 3.9, we can reduce any P ∈ CSP(H,Γ) to an instance
PCL ∈ CSP(H,Ext) in polynomial time. Since PCL has a solution if and only if P does, tractability
or fixed-parameter tractability of CSP(H,Ext) implies the same for CSP(H,Γ).

To illustrate the above result, consider again the connected graph partition problem (Prob-
lem 2.8). This problem is NP-complete [GJ79, p. 209], even for fixed α ≥ 3. However, note that
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when β is fixed, we can solve the problem in polynomial time, by successively guessing sets E′, with
|E′| ≤ β, of broken edges, and checking whether the connected components of the graph 〈V,E−E′〉

all have α or fewer vertices. The number of such sets E′ is bounded by
β∑
i=1

(
|E|
i

)
≤ (|E| + 1)β ,

which is polynomial if β is fixed. As we show below, this argument can be seen as a special case
of Theorem 3.9. To simplify the analysis, we assume without loss of generality that α < |V |, which
means that any solution has at least one broken edge.

We claim that if β is fixed, then the constraint Cβ = eβ [δβ ] allows partial assignment checking,
and has only a polynomial number of satisfying assignments. The latter implies that for any instance
P of the CGP, |sol(pjiv(δβ)(P ))| is polynomial in the size of P for every subset of iv(δβ). Furthermore,
we will show that for the constraint Cα = eα[δα], we also have that |sol(pjiv(δα)(P ))| is polynomial
in the size of P . That Cα allows partial assignment checking follows from a result by Régin [Rég96],
since the cardinality sets of Cα are intervals.

First, we show that the number of satisfying assignments to Cβ is limited. Since Cβ limits the
number of ones in any solution to β, the number of satisfying assignments to this constraint is the

number of ways to choose up to β variables to be assigned one. This is bounded by
β∑
i=1

(
|E|
i

)
≤

(|E|+ 1)β , and so we can generate them all in polynomial time.
Now, let θ be such a solution. How many solutions to P contain θ? Every constraint on {u, v, e}

with e = 1 allows at most |V |2 assignments, and there are at most β such constraints. So far we
therefore have at most (|E|+ 1)β × |V |2β assignments.

On the other hand, a ternary constraint with e = 0 requires u = v. Consider the graph G0

containing for every constraint on {u, v, e} with e = 0 the vertices u and v as well as the edge {u, v}.
Since the original graph was connected, every connected component of G0 contains at least one
vertex which is in the scope of some constraint with e = 1. Therefore, since equality is transitive,
each connected component of G0 allows at most one assignment for each of the (|E| + 1)β × |V |2β
assignments to the other variables of P . We therefore get a total bound of (|E|+ 1)β × |V |2β on the
total number of solutions to P , and hence to pjiv(δα)(P ).

The hypergraph of any CSP instance P encoding the CGP has two hyperedges covering the whole
problem, so the hypertree width of this hypergraph is two. Therefore, Corollary 4.9 and Theorem 2.17
apply and yield tractability for fixed β.

4. Subproblem Decompositions

To generalize Theorem 3.9, consider the fact that our definition of a global constraint allows us
to view a CSP instance 〈V,C〉 as a single constraint e[δ], by letting V(δ) = V and δ = C. The
algorithm e then checks if an assignment satisfies all constraints. Of course, such a constraint
encodes an NP-complete problem, but this is no different from e.g. the EGC constraint [QLOvBG04]
(cf. Example 2.5). With this in mind, in this section we are going to investigate what happens if a
CSP instance is split up into a set of smaller instances.

Splitting up a CSP instance into smaller instances has previously been considered by Cohen and
Green [CG06]. They use a very general framework of guarded decompositions [CJG08] to define
what they call “typed guarded decompositions”. This notion allows them to obtain a tractability
result for a CSP instance that can be split into smaller instances drawn from known tractable classes.
In this section, we are going to show how the notions defined in Section 3.1 allow us to prove a more
general result.

Definition 4.1 (CSP subproblem) Given two CSP instances P = 〈V,C〉 and P ′ = 〈V ′, C ′〉, we
say that P ′ is a subproblem of P if C ′ ⊆ C and V ′ = V(C).
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In other words, a subproblem of a CSP instance is given by a subset of the constraints in that
instance. In [CG06], Cohen and Green call a subproblem a component of P .

Definition 4.2 (CSP join) Let Q1 = 〈V1, D1, C1〉 and Q2 = 〈V2, D2, C2〉 be two CSP instances.
The join of Q1 and Q2 is the instance Q1 tQ2 = 〈V1 ∪ V2, C1 ∪ C2〉.

Definition 4.3 (Subproblem decomposition) Let P be a CSP instance. A set S of subproblems
of P is a subproblem decomposition of P if

⊔
S = P .

A subproblem decomposition of a CSP instance is proper if no element of the decomposition is
a subproblem of any other.

A subproblem decomposition of an instance P , then, is a set of subproblems that together contain
all the constraints and variables of P . Note that a constraint may occur in more than one subproblem
in a decomposition.

Below, we shall assume that all subproblem decompositions are proper. Since the solutions to a
CSP instance can be projected down to solutions for any subproblem, there is no benefit in allowing
one subproblem to contain another.

Example 4.4 Let P = 〈V,C〉 be a CSP instance. A very simple subproblem decomposition of P
would be {〈V(δ), e[δ]〉 | e[δ] ∈ C}, that is, every constraint of P is a separate subproblem. This
subproblem decomposition is clearly proper.

For a more complicated example, consider a family of CSP instances on the set of boolean
variables {xi, yi, zi | 1 ≤ i ≤ n ∈ {4, 6, 8, . . .}}, with the following constraints: An EGC con-
straint A on {x1, . . . , xn} with K(1) = 4 and K(0) = {0, . . . , n}. A second EGC constraint B,
on {y1, . . . , yn, z1, . . . , zn} with K(1) = K(0) = {n}, and binary constraints on each pair {xi, yi}
enforcing equality. A possible subproblem decomposition for an instance from this family would be
{P,Q}, where P contains A as well as the binary constraints, and Q contains the constraint B. This
family is depicted in Figure 2, with Q marked by a dashed line.

Viewing subproblems as constraints and a subproblem decomposition S as a CSP instance
〈V(
⊔
S), S〉, we have sol(〈V(

⊔
S), S〉) = sol(

⊔
S), since we have lost no information. As such,

we will treat S as a CSP instance when it is convenient to simplify notation.
Using Definition 4.3, we can treat any set of CSP instances S as a subproblem decomposition

of the instance
⊔
S. With that in mind, whenever we say that S is a subproblem decomposition

without specifying what it is a decomposition of, we mean that S is a decomposition of the CSP
instance

⊔
S.

Definition 4.5 (CSP instances given by subproblem decompositions) Let F be a family of
subproblem decompositions. We define CSP(F) to be the class of CSP instances {

⊔
S | S ∈ F}.

Definition 4.6 (Hypergraph of a subproblem decomposition) Let S be a subproblem de-
composition. The hypergraph of S, denoted hyp(S), has vertex set V(

⊔
S) and set of hyperedges

{V(P ) | P ∈ S}.
For a family F of subproblem decompositions, let hyp(F) = {hyp(S) | S ∈ F}.

Since a CSP instance can be seen as a global constraint, Definition 3.5 (partial assignment
checking) and Definition 3.8 (sparse intersections) carry over unchanged. To apply them to a family
of subproblem decompositions F , we need only consider the catalogue

⋃
F in both cases.

One way of interpreting Definition 3.5 for a catalogue of CSP instances is that every instance
has been drawn from a tractable class — not necessarily the same one, as long as these classes all
allow us to check in polynomial time whether a partial assignment extends to a solution. Most
known tractable classes of CSP instances have this property; in particular, all the classes discussed
in Section 2.2 have it.

To illusrate how these definitions apply to subproblem decompositions, consider the following
example.
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Figure 2: Family of instances from Example 4.4, with decomposition.

Example 4.7 Recall the family of subproblem decompositions in Example 4.4. For a decomposition
S = {P,Q} from this family, the set of intersection vertices for both subproblems is {y1, . . . , yn}.
Furthermore, the EGC constraint A requires that there are exactly 4 variables assigned 1 among
{x1, . . . , xn}, so there are

(
n
4

)
satisfying assignments for this constraint. The equality constraints

ensure that this is the number of solutions to the whole subproblem P , so for every X ⊆ {y1, . . . , yn}
we have that |sol(pjX(S))| ≤

(
n
4

)
. Therefore, this family of subproblem decompositions has sparse

intersections.

Another example where Definition 3.8 would be satisfied is when every set of intersection vertices
is covered by a fixed number of table constraints. In this case, the number of possible solutions is
bounded by the size of the join of all these constraints. This is the condition used by Cohen and
Green [CG06]. As we will see, this means that we can derive the main theorem in [CG06] as a special
case of Theorem 4.8, below. We, however, do not need to cover the intersection vertices of every
subproblem by a fixed number of table constraints.

Theorem 4.8 Let F be a family of subproblem decompositions that allows partial assignment check-
ing. If F has sparse intersections, then we can in polynomial time reduce any subproblem decompo-
sition S ∈ F to a classic CSP instance P with hyp(P ) = hyp(S), such that P has a solution if and
only if S does.

Proof As subproblems can be seen as global constraints, the proof is analogous to the proof of
Theorem 3.9.

Corollary 4.9 Let F be a family of subproblem decompositions that allows partial assignment check-
ing and has sparse intersections. If CSP(hyp(F),Ext) is tractable or in FPT, then so is CSP(F).
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Proof Let F be given. By Theorem 4.8, we can reduce any subproblem decomposition S ∈ F to an
instance P ∈ CSP(hyp(F),Ext) in polynomial time. Since P has a solution if and only if S does,
tractability of CSP(hyp(F),Ext) implies the same for CSP(F).

4.1 Back Doors

If a class of CSP instances includes constraints from a catalogue that is not known to allow partial
assignment checking, we may still obtain tractability in some cases by applying the notion of a back
door set. A (strong) back door set [GS12, WGS03] is a set of variables in a CSP instance that, when
assigned, make the instance easy to solve. Below, we are going to adapt this notion to individual
constraints.

Definition 4.10 (Back door) Let Γ be a global constraint catalogue. A back door for a constraint
e[δ] ∈ Γ is any set of variables W ⊆ V(δ) (called a back door set) such that we can decide in
polynomial time whether a given assignment θ to a set of variables V(θ) ⊇ W is contained in an
assignment that satisfies e[δ], i.e. whether there exists µ ∈ e[δ] such that µ|V(θ) = θ.

Trivially, for every constraint e[δ] the set of variables V(δ) is a back door set, since by Defini-
tion 2.4 we can always check in polynomial time if an assignment to V(δ) satisfies the constraint
e[δ].

The key point about back doors is that given a catalogue Γ, adding to each e[δ] ∈ Γ with
back door set W an arbitrary set of assignments to W produces a catalogue Γ′ that allows partial
assignment checking. Adding a set of assignments Θ means to add Θ to the description, and modify
the algorithm e to only accept an assignment if it contains a member of Θ in addition to previous
requirements. Furthermore, given a CSP instance P containing e[δ], as long as Θ ⊇ πW (sol(P )),
adding Θ to e[δ] produces an instance that has exactly the same solutions. This point leads to the
following definition.

Definition 4.11 (Sparse back door cover) Let ΓPAC be a catalogue that allows partial assign-
ment checking and ΓBD a catalogue. For every instance P = 〈V,C〉 over ΓPAC ∪ΓBD, let P ∩ΓPAC
be the instance with constraint set C ′ = C ∩ ΓPAC and set of variables

⋃
{V ∩ V(δ) | e[δ] ∈ C ′}.

A class of CSP instances P over ΓPAC ∪ΓBD has sparse back door cover if there exists a constant
c such that for every instance P = 〈V,C〉 ∈ P and constraint e[δ] ∈ C, if e[δ] 6∈ ΓPAC , then there
exists a back door set W for e[δ] with |sol(pjX(P ∩ ΓPAC))| ≤ |P |c for every X ⊆W .

Sparse back door cover means that for each constraint that is not from a catalogue that allows
partial assignment checking, we can in polynomial time get a set of assignments Θ for its back
door set using Algorithm 1, and so turn this constraint into one that does allow partial assignment
checking. This operation preserves the solutions of the instance that contains this constraint.

Theorem 4.12 If a class of CSP instance P has sparse back door cover, then we can in polynomial
time reduce any instance P ∈ P to an instance P ′ such that hyp(P ) = hyp(P ′) and sol(P ) = sol(P ′).
Furthermore, the class of instances {P ′ | P ∈ P} is over a catalogue that allows partial assignment
checking.

Proof Let P = 〈V,C〉 ∈ P. We construct P ′ by adding to every e[δ] ∈ C such that e[δ] 6∈ ΓPAC ,
with back door set W , the set of assignments sol(pjW (P ∩ ΓPAC)), which we can obtain using
Algorithm 1. By Definition 4.11, we have for every X ⊆ W that |sol(pjW (P ∩ ΓPAC))| ≤ |P |c, so
Algorithm 1 takes polynomial time since ΓPAC does allow partial assignment checking.

It is clear that hyp(P ′) = hyp(P ), and since sol(pjW (P∩ΓPAC)) ⊇ πW (sol(P )), the set of solutions
stays the same, i.e. sol(P ′) = sol(P ). Finally, since we have replaced each constraint e[δ] in P that
was not in ΓPAC by a constraint that does allow partial assignment checking, it follows that P ′ is
over a catalogue that allows partial assignment checking.
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One consequence of Theorem 4.12 is that we can sometimes apply Theorem 3.9 to a CSP instance
that contains a constraint for which checking if a partial assignment can be extended to a satisfying
one is hard. We can do so when the variables of that constraint are covered by the variables of other
constraints that do allow partial assignment checking — but only if the instance given by those
constraints has few solutions.

As a concrete example of this, consider again the encoding of the CGP that we gave in Exam-
ple 2.9. The variables of constraint Cα are entirely covered by the instance P ′ obtained by removing
Cα. As the entire set of variables of a constraint is a back door set for it, and the instance P ′ has
few solutions (cf. the dicsussion after Theorem 3.9), this class of instances has sparse back door
cover. As such, the constraint Cα could, in fact, be arbitrary without affecting the tractability of
this problem. In particular, the requirement that Cα allows partial assignment checking can be
dropped.

5. Weighted CSP

Having few solutions in key parts of a CSP instance has turned out to be a property we can exploit
to obtain tractability. In this section, we are going to apply this property to an extension of the CSP
framework called weighted CSP instances [GGS09, dGSV06], where every constraint assigns a cost
to every satisfying assignment, and we would like to find a solution with smallest cost. This type of
CSP is itself a special case of the more general valued CSP framework [SFV95, Živ09], where every
constraint has a function that assigns a cost to every possible assignment for the variables of that
constraint.

Definition 5.1 (Weighted constraint) A weighted global constraint e[δ] is a global constraint
that assigns to each θ ∈ e[δ] a value cost(e[δ], θ) from Q.

Definition 5.2 (WCSP instance) A WCSP instance is a pair P = 〈V,C〉, where V is a set of
variables and C a set of weighted constraints. An assignment is a solution to P if it satisfies every
constraint in C, and we denote the set of all solutions to P by sol(P ).

For every solution θ to P we define cost(P, θ) =
∑
e[δ]∈C

cost(e[δ], θ|V(δ)). An assignment θ is an

optimal solution to P if and only if it is a solution to P with the smallest cost, i.e. cost(P, θ) =
min({cost(P, θ′) | θ′ ∈ sol(P )}).

Definition 5.3 (WCSP decision problem) Given a WCSP instance P and k ∈ Q, the WCSP
decision problem is to decide whether P has a solution θ with cost(P, θ) ≤ k.

As for CSP instances, a classic WCSP instance is one where all constraints are table global
constraints. Since we are free to ignore the costs a weighted constraint puts on assignments and
treat it as an “ordinary” constraint, definitions of subproblems and subproblem decompositions carry
over unchanged. Note that since the WCSP decision problem in clearly in NP, we can view a WCSP
instance as a weighted global constraint. Therefore, Definition 3.5 will now be subtly different.

Definition 5.4 (Weighted part. assignment checking) A weighted constraint catalogue Γ al-
lows partial assignment checking if for any weighted constraint e[δ] ∈ Γ we can decide in polynomial
time, given an assignment θ to a set of variables W ⊆ V(δ) and k ∈ Q, whether θ is contained in
an assignment that satisfies e[δ] and has cost at most k, i.e. whether there exists µ ∈ e[δ] such that
θ = µ|W and cost(e[δ], µ) ≤ k.

In other words, given a partial assignment we need to be able to solve the WCSP decision
problem for our constraint in polynomial time. As for the projection of a constraint, we need to
alter Definition 3.1 to take costs into account.

15



Definition 5.5 (Weighted constraint projection) Let e[δ] be a weighted constraint. The pro-
jection of e[δ] onto a set of variables X ⊆ V(δ) is the constraint pjX(e[δ]) such that µ ∈ pjX(e[δ])
if and only if there exists θ ∈ e[δ] with θ|X = µ. The cost of an assignment θ ∈ pjX(e[δ]) is
cost(pjX(e[δ]), θ) = min({cost(e[δ], µ) | µ ∈ e[δ] and µ|X = θ}).

For a CSP instance P = 〈V,C〉 and X ⊆ V we define pjX(P ) = 〈X,C ′〉, where C ′ is the least
set containing for every e[δ] ∈ C such that X ∩ V(δ) 6= ∅ the constraint pjX∩V(δ)(e[δ]).

Definition 5.6 (Weighted table constraint induced by a subproblem) Let S be a subprob-
lem decomposition. For every T ∈ S, let µ∗ be the assignment to V(T ) − iv(T ) that assigns a
special value ∗ to every variable. The weighted table constraint induced by T is ic(T ) = e[δ], where
V(δ) = V(T ), and δ contains for every assignment θ ∈ sol(pjiv(T )(S)) the assignment θ ⊕ µ∗ with
cost(ic(T ), θ ⊕ µ∗) = cost(pjiv(T )(T ), θ).

Since the variables of a subproblem T ∈ S not in iv(T ) occur only in T itself, if we have a
solution to pjiv(T )(S), it doesn’t matter what solution to T we extend it to. We should therefore
pick the one that has the smallest cost, and that cost is precisely cost(pjiv(T )(T ), θ) by Definition 5.5.
The same as for CSP instances, if every subproblem in a weighted decomposition S allows weighted
partial assignment checking, building ic(T ) for any T ∈ S can be done in polynomial time when
|sol(pjiv(T )(S))| is polynomial in the size of

⊔
S for every subset of iv(T ), again by using Algorithm 1.

Since the definition of sparse intersections (Definition 3.8) carries over unchanged, we are ready to
prove the following analogue of Theorem 3.9 for weighted subproblem decompositions.

Theorem 5.7 Let F be a family of weighted subproblem decompositions that allows partial assign-
ment checking. If F has sparse intersections, then we can in polynomial time reduce any weighted
subproblem decomposition S ∈ F to a classic weighted CSP instance P with hyp(P ) = hyp(S), such
that P has a solution with cost at most k ∈ N if and only if S does.

Proof Let S be a subproblem decomposition from F . For each T ∈ S, P will contain the table
constraint ic(T ) from Definition 3.7. Since F allows partial assignment checking and has sparse
intersections, computing ic(T ) can be done in polynomial time by invoking Algorithm 1 on pjiv(T )(S).

It is clear that hyp(P ) = hyp(S). All that is left to show is that P has a solution with cost at
most k ∈ N if and only if S does. Let θ be a solution to S. For every T ∈ S, θ|iv(T ) ∈ pjiv(T )(S) by
Definitions 3.6 and 5.5, so the assignment µ that assigns the value θ(v) to each v ∈

⋃
T∈S

iv(T ), and ∗ to

every other variable is a solution to P . Furthermore, for every T ∈ S we have by Definition 5.6 that
cost(ic(T ), µ|V(T )) = cost(pjiv(T )(T ), µ|iv(T )), so by Definition 5.5 cost(ic(T ), µ|V(T )) ≤ cost(T, θ|V(T ))
and therefore cost(P, µ) ≤ cost(S, θ).

In the other direction, if θ is a solution to P , then θ satisfies ic(T ) for every T ∈ S. By Defini-
tion 5.6, this means that θ|iv(T ) ∈ sol(pjiv(T )(S)), and by Definition 5.5, there exists an assignment µT

with µT |iv(T ) = θ|iv(T ) that satisfies T , such that cost(ic(T ), θ|V(T )) = cost(T, µT ). By Definition 3.6,
the variables not in iv(T ) do not occur in any other subproblem from S, so we can combine all the
assignments µT to form a solution µ to S such that for T ∈ S and v ∈ V(T ) we have µ(v) = µT (v),
with cost(P, θ) = cost(S, µ).

As before, for a family of weighted subproblem decompositions F we define WCSP(F) = {
⊔
S |

S ∈ F}, and for a class of hypergraphs H we let WCSP(H,Ext) be the class of classic WCSP
instances whose hypergraphs are in H. With that in mind, we can use Theorem 5.7 to obtain new
tractable and fixed-parameter tractable classes of weighted CSP instances with global constraints.

Corollary 5.8 Let F be a family of weighted subproblem decompositions that allows partial assign-
ment checking and has sparse intersections. If WCSP(hyp(F),Ext) is tractable or in FPT, then so
is WCSP(F).
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Proof Let F be given. By Theorem 5.7, we can reduce any weighted subproblem decomposition
S ∈ F to an instance P ∈ WCSP(hyp(F),Ext) in polynomial time. Since P has a solution with
cost k if and only if S does, tractability of WCSP(hyp(F),Ext) implies the same for WCSP(F).

6. Summary

We have studied the tractability of CSPs with global constraints under various structural restrictions
such as tree and hypertree width. By exploiting the number of solutions to CSP instances in key
places, we have identified new tractable classes of such problems, both in the crisp and weighted
case.

Furthermore, we have shown how this technique can be used to combine CSP instances drawn
from known tractable classes, extending a previous result by Cohen and Green [CG06]. We have
also shown how the existence of back doors in CSP instances can be used to augment our results.

More work remains to be done on this topic. In particular, investigating whether a refinement of
the conditions we have identified can be used to show dichotomy theorems, similar to those known
for certain kinds of constraints and structural restrictions [CG10, Gro07, Mar10a]. Also of interest
is the complexity of checking whether a constraint has few solutions, which ties into finding classes
of CSP instances that satisfy Definition 3.8.
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