

Developing Map Viewing Applications with J2ME
and ESRI® Server-side Technologies

An ESRI Technical Paper • April 2004

ESRI 380 New York St., Redlands, CA 92373-8100, USA • TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL info@esri.com • WEB www.esri.com

Copyright © 2003 ESRI
Copyright © 2004 ESRI
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of ESRI. This
work is protected under United States copyright law and other international copyright
treaties and conventions. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording,
or by any information storage or retrieval system, except as expressly permitted in
writing by ESRI. All requests should be sent to Attention: Contracts Manager, ESRI,
380 New York Street, Redlands, CA 92373-8100, USA.

The information contained in this document is subject to change without notice.

U.S. GOVERNMENT RESTRICTED/LIMITED RIGHTS
Any software, documentation, and/or data delivered hereunder is subject to the terms of
the License Agreement. In no event shall the U.S. Government acquire greater than
RESTRICTED/LIMITED RIGHTS. At a minimum, use, duplication, or disclosure by
the U.S. Government is subject to restrictions as set forth in FAR §52.227-14 Alternates
I, II, and III (JUN 1987); FAR §52.227-19 (JUN 1987) and/or FAR §12.211/12.212
(Commercial Technical Data/Computer Software); and DFARS §252.227-7015 (NOV
1995) (Technical Data) and/or DFARS §227.7202 (Computer Software), as applicable.
Contractor/Manufacturer is ESRI, 380 New York Street, Redlands, CA 92373-8100,
USA.

ESRI, MapObjects, ArcIMS, the ESRI globe logo, www.esri.com, and @esri.com are
trademarks, registered trademarks, or service marks of ESRI in the United States, the
European Community, or certain other jurisdictions. Other companies and products
mentioned herein are trademarks or registered trademarks of their respective trademark
owners.

Developing Map Viewing
Applications with J2ME and ESRI
Server-side Technologies

An ESRI Technical Paper

Contents

What is J2ME? 1

Configurations 1
Profiles 1
Optional packages 1
Devices that support J2ME 1
Warnings 2

ESRI server-side technologies 2
MapObjects—Java 2
ArcIMS 2

MobileGIS application 2
Before you start 2
Goal 2
MobileGIS code 3
MapObjects—Java server code 5
ArcIMS server code 6
Running the application 8

What's next? 10
References 11

ESRI Technical Paper i

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

April 2004 ii

Developing Map Viewing
Applications with J2ME and ESRI
Server-side Technologies

This paper will discuss developing a simple map viewing application,
written for the Java™ Micro Edition (J2ME) platform and targeted to run
on mobile clients such as cell phones, PDAs, and other devices. The maps
are generated using one of two ESRI Java server-side technologies:
MapObjects®—Java Edition or ArcIMS®. A General Packet Radio Service
(GPRS), LAN, or other connection is required for the device to connect to
the server. This paper does not cover developing Location-Based Services
(LBS) applications.

What is J2ME? J2ME
1

 is defined as 'the edition of the Java platform that is targeted at small, standalone
or connectible consumer and embedded devices. The J2ME technology consists of a
virtual machine and a set of application programming interfaces (APIs) suitable for
tailored runtime environments for these devices. The J2ME technology has two primary
kinds of components—configurations and profiles'.

2

 The J2ME architecture defines
configurations, profiles, and optional packages as elements for building complete Java
runtime environments.

Configurations Configurations are composed of a virtual machine and a minimal set of class libraries.
These provide the base functionality for a particular range of devices that share similar
characteristics. Currently, there are two J2ME configurations: Connected Limited Device
Configuration (CLDC) and Connected Device Configuration (CDC).

Profiles Configurations must be combined with a higher level of APIs or profiles that further
define the application life cycle model, the user interface, and access to device-specific
properties. There are several profiles including Mobile Information Device Profile
(MIDP), Foundation Profile (FP), Personal Profile (PP), and Personal Basic Profile
(PBP).

Optional packages The configurations and profiles can be further extended to offer APIs for using existing
and emerging technologies such as Web services, wireless messaging, and database
connectivity.3

Devices that support

J2ME

All major cell phone manufacturers support the J2ME platform. At the time this paper
was written, the most commonly found configuration and profile are CLDC 1.x and
MIDP 1.x, respectively. Although MIDP 2.x has been released by Sun, very few devices
support this profile. Sun's Web site lists the currently available configurations and
profiles supported by the devices.8

ESRI Technical Paper 1

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

Warnings

 Although Sun provides specifications, device vendors implement the configurations
and profiles a little differently. An application may look and work as expected when
developing using Sun's J2ME Wireless Toolkit, but it is recommended that the
developer also test the application using the vendor's own wireless toolkit and
device.

 MIDP 1.x and 2.x do not support floating-point precision, thus there is a possible

loss of precision. Developers need to handle this either on the client-side or server-
side application.

 Since most devices are constrained in processing power and memory, the application

design must be simple.

 Applications running in the emulators do not give an idea of the actual speed and
working of an application and should be tested using a device.

 Not all clients support JPEG, GIF, and PNG24 image formats; therefore, use PNG8

as the image output format on the server.

ESRI server-side
technologies

MapObjects—Java MapObjects—Java Edition is a powerful collection of components used to build custom,

cross-platform mapping applications. Both high-level and fine-grained components are
available that perform a variety of spatial operations, which can be used in the
presentation, Web, and server tiers. Since these are pure Java-based objects, they are
deployable and can run on any platform that supports the J2SE 1.4 version and above. It
can be embedded/integrated into an existing Web application and power the mapping
functionality or be used as the center of a map-based Web application.

ArcIMS ArcIMS provides a standard platform to integrate, share, and exchange GIS data over the
Internet. Users can integrate local data sources with Internet data sources for display,
query, and analysis in an easy-to-use Web browser. It is highly scalable and uses an XML
(ArcXML/AXL)-based communication model.

MobileGIS
application

Before you start This paper assumes that the reader has some basic experience developing J2ME

applications and using one or both ESRI server-side technologies used in this paper:
MapObjects—Java Edition and ArcIMS.

Goal The MobileGIS application lets users connect and view maps that are hosted on a server.
Once connected, the client application shall support basic interaction, such as zooming
and panning, with the map. This particular application will be targeted for use on mobile
phones.

April 2004 2

Map Generalization in GIS: Practical Solutions with Workstation ArcInfo Software

If using ArcIMS to serve maps, an ArcIMS server must be available, with image services
that output maps in PNG8 format. You will write a simple JSP page that communicates
with this server using the ArcIMS Java Connector.

If using MapObjects—Java, AXL files must be created. You will write a simple JSP page
to interact with the map and output images. Creating ArcIMS services and MapObjects—
Java AXL files is beyond the scope of this paper.

MobileGIS code The end user experience of the client will be the same whether or not an ArcIMS or
MapObjects—Java server is used. The following code snippets lay down the design and
common set of classes of the MobileGIS application.

The following UML class diagram shows the relation between the classes that are part of
the MobileGIS application. Classes shown in yellow will be the focus of this paper.

MobileGIS.java This MIDlet class creates the user interface for the application and handles the user
interaction. This class creates an instance of the appropriate class that implements the
ServerMap interface.

public class MobileGIS extends MIDlet {

ServerMap serverMap;

public void startApp() {
if (userSelection == MOJ)

serverMap = new MOJServerMap();
else

 serverMap = new ArcIMSServerMap();

ESRI Technical Paper 3

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

}
// Canvas to allow displaying of map image
private class MapCanvas extends Canvas {

public void paint(Graphics) {
 paint(mapImage);
 }
// Perform action on map.

public void keyPressed(int) {
serverMap.doMapAction(action);

}
 }

 // Handle user interaction.
 private class CommandHandler implements CommandListener {
 public void commandAction(Command, Displayable) {

// Call appropriate serverMap method and update UI.
}

 }
}

ServerMap.java This interface defines the behavior that is expected and used by the MobileGIS class. All

implementing classes provide appropriate interaction with the server, based on calls made
by the MobileGIS class.

public interface ServerMap extends Runnable {

// List maps on server.
public void listMaps();

// List map layers.
public void listLayers();

// Do specified map action.
public void doMapAction(int);

// Get server response.
public Object getResponse();

}

HttpHandler.java This class handles communication via HTTP with the server. It is written as a thread so
the application does not freeze when communicating with the server in the background.

public class HttpHandler implements Runnable {

// Constructor to handle simple string-based communication.
public HttpHandler(String, String)

// Constructor to handle fetching of image from URL.
public HttpHandler(String, int, int)

// Set request parameters.
public void setParameters(Hashtable)

// Server response must be cast appropriately.
public Object getResponse()

April 2004 4

Map Generalization in GIS: Practical Solutions with Workstation ArcInfo Software

// Communicate with server.
public void run() {
// Connect to URL.
// Write request.
// Get response.
//if (image)

//fetch image from server
//else
//parse string

}
}

MapObjects—Java
server code

Serverside

(MobileMOJ.jsp)
The bulk of the processing is handled on the server. For example, the creation of maps,
image writers, and layer visibility are handled on the server. When a client requests to
zoom and pan, depending on the client's current extent, the server computes the new
extent to generate the map image.

Hashtable maps; // Collection of maps on server
Hashtable writers; // Image writers

if (request == mapList) {

// Return list of maps from specific directory on
// server.

}
else if (request == layerList) {

if (maps == null) {
// Initialize maps from axl.
// Initialize image writers.

 }

 // Return list in specified map.
}
else {

// Set current map state as specified in request.
// Perform action on map.
// Output map image.
// Return image URL and map envelope.

}

Client
(MOJServerMap.java)

The communication model is a simple set of parameter key-value sets as part of the URL.
The server interprets the request parameters and performs the appropriate action on the
map and returns the URL to the generated map image. The client is then responsible for
fetching the image from this URL.

public class MOJServerMap implements ServerMap {

// Implement ServerMap methods.

public void run() {

 HttpHandler conn = new HttpHandler(serverUrl, “”);
conn.setParameters(params);

// Connect to server using HttpHandler.

ESRI Technical Paper 5

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

response = parseResponse(conn.getResponse());

if (getImage)

// Fetch image from server.
}

// Parse String response from server.
private String[] parseResponse(String) {

// Parse response string.
}

}
ArcIMS server code

Serverside

(MobileArcIMS.jsp)
The server-side JSP simply redirects requests to the specified server using the ArcIMS
Java Connector. The Java Connector allows an application to communicate with the
ArcIMS application server. Due to limitations in the client-side XML parser, any '#'
characters in the response are stripped before being sent back to the client. The state of
the map is retained on the client.

// Make TCP connection to ArcIMS server.
return connection.send(request); // Return ArcXML.

Client
(ArcIMSServerMap.java)

The communication model in this case is ArcXML, which is a subset of XML used by
ArcIMS. XML support is provided by kXML, a lightweight open source XML parser
available for MIDP applications. Formatting of requests and parsing of response are
handled by the client. The XML response is parsed and appropriate objects are created,
which are then used for subsequent requests.

public class ArcIMSServerMap implements ServerMap {

// Implement ServerMap methods.

public void run() {
HttpHandler conn = new HttpHandler(serverUrl,
arcXMLRequest);
conn.setParameters(params);
parseArcXML(conn.getResponse());

 }

// Parse XML response from server.
private void parseArcXML(String) {

 if (parsedXML == imageUrl)
response = fetchImage();

 else
response = parsedObject;

}

// A layer in an ArcXML map service.
private class Layer {

String name;
int id;
boolean visibility;

}

private calculateFullExtentEnvelope() {

April 2004 6

Map Generalization in GIS: Practical Solutions with Workstation ArcInfo Software

// Calculate envelope based on smallest (min) or largest //
(max).

// Point of each layer's envelope
}

// The envelope/extents of the map service
private class Envelope {
 long minX, minY, maxX & maxY;

int digits; // Digits after decimal point

private void stringToLong(String minx, miny, maxx, maxy) {

// Convert String to long and remove decimal point.
}

private String longToString(long val) {

// Return long as String with decimal point.
}

private void zoomIn() {

// Compute zoomed in envelope.
}

private void zoomOut() {

// Compute zoomed out envelope.
}

private void pan(int) {

// Compute envelope after panning in specified
// direction.

}
}

}

ESRI Technical Paper 7

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

Running the
application

The following screen captures show the application running on the Sony Ericsson T610
emulator.

1: Pan North West

2: Pan North

4: Pan West

7: Pan South West

8: Pan South

* a/A: Zoom to Full
Extents

3: Pan North East

5: Zoom In

6: Pan East

9: Pan South East

#: Zoom to Initial Extents

0: Zoom Out

April 2004 8

Map Generalization in GIS: Practical Solutions with Workstation ArcInfo Software

 MOJServerMap ArcIMSServerMap
Once the application is
launched, the user can select
whether to use a
MapObjects—Java or ArcIMS
server. Click List Maps to list
the maps on this server.

The list of maps
(MapObjects—Java) or
services (ArcIMS) are
displayed. After selecting a
map, click List Layers to see
the layer list.

Once the layers are listed, the
user can select the visibility of
the layers. Click Get Map to
show World map with the
cities layer turned off.

ESRI Technical Paper 9

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

 MOJServerMap ArcIMSServerMap
The map is now displayed. The
server respects any projection
on the map and returns the
map with the projection. The
user can now use the keypad to
zoom or pan the map.

Several zooms and pans later,
we can view a desired section
of the map. Click Exit to quit
the application.

What's next? To make the application usable on PDAs and phones that do not have a keyboard,
additional commands should be added to the MapCanvas. CommandListeners must
be implemented to handle the event generated and serverMap.doMapAction called
with appropriate action.

 The JSP sessionID cookie can be stored in the header information of the request that

is sent by the client. This allows the server to use sessions to store the state of the
map, and thus the communication between the server and client is reduced.

 Features can be added to the application if the application is targeted at heavier

clients, such as smart phones, that have more processing power and memory.

April 2004 10

Map Generalization in GIS: Practical Solutions with Workstation ArcInfo Software

References J2ME: http://java.sun.com/j2me/
 Symbian Glossary of Technical Terms:

http://www.symbian.com/technology/glossary.html
 Java 2 Platform, Micro Edition: http://java.sun.com/j2me/j2me-ds.pdf
 ESRI: http://www.esri.com
 MapObjects—Java Edition: http://www.esri.com/software/mojava/index.html
 ArcIMS: http://www.esri.com/software/arcims/index.html
 kXML: http://kxml.enhydra.org/
 J2ME device list: http://java.sun.com/webapps/device/device

ESRI Technical Paper 11

Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies

April 2004 12

	Developing Map Viewing Applications with J2ME and ESRI Server-side Technologies
	Contents
	What is J2ME?
	Configurations
	Profiles
	Optional packages
	Devices that support J2ME
	Warnings

	ESRI server-side technologies
	MapObjects--Java
	ArcIMS

	MobileGIS application
	Before you start
	Goal
	MobileGIS code
	MapObjects--Java server code
	ArcIMS server code
	Running the application

	What's next?
	References

