INF5390 - Kunstig intelligens

Neural Networks and Support Vector Machines

Roar Fjellheim
Outline

- Neural networks
- Perceptrons
- Neural networks
- Support vector machines
- Summary

AIMA Chapter 18: Learning from Examples
Neural networks in AI

- The human brain is a huge network of neurons
 - A neuron is a basic processing unit that collects, processes and disseminates electrical signals
- Early AI tried to imitate the brain by building artificial neural networks (ANN)
 - Met with theoretical limits and "disappeared"
- In the 1980-90’es, interest in ANNs resurfaced
 - New theoretical development
 - Massive industrial interest & applications
The basic unit of neural networks

- The network consists of units (nodes, "neurons") connected by links
 - Carries an activation a_i from unit i to unit j
 - The link from unit i to unit j has a weight $W_{i,j}$
 - Bias weight $W_{0,j}$ to fixed input $a_0 = 1$

- Activation of a unit j
 - Calculate input $in_j = \sum W_{i,j} a_i$ ($i=0..n$)
 - Derive output $a_j = g(in_j)$ where g is the activation function
Activation functions

- Activation function should separate well
 - “Active” (near 1) for desired input
 - “Inactive” (near 0) otherwise
- It should be *non-linear*
- Most used functions
 - Threshold function
 - Sigmoid function
Neural networks as logical gates

- With proper use of bias weight W_0 to set thresholds, neural networks can compute standard logical gate functions.
Neural network structures

- Two main structures
 - Feed-forward (acyclic) networks
 - Represents a function of its inputs
 - No internal state
 - Recurrent network
 - Feeds outputs back to inputs
 - May be stable, oscillate or become chaotic
 - Output depends on initial state

- Recurrent networks are the most interesting and "brain-like", but also most difficult to understand
Feed-forward networks as functions

- A FF network calculates a *function* of its inputs
- The network may contain *hidden* units/layers

![Diagram of a feed-forward network]

- By changing #layers/units and their weights, different functions can be realized
- FF networks are often used for *classification*
Perceptrons

- Single-layer feed-forward neural networks are called *perceptrons*, and were the earliest networks to be studied.
- Perceptrons can only act as *linear separators*, a small subset of all interesting functions.
 - This partly explains why neural network research was discontinued for a long time.

Diagram:

(a) x_1 and x_2

(b) x_1 or x_2

(c) $x_1 \text{ xor } x_2$
Perceptron learning algorithm

- How to train the network to do a certain function (e.g. *classification*) based on a *training set* of input/output pairs?

- Basic idea
 - Adjust network link weights to minimize some measure of the error on the training set
 - Adjust weights in direction that minimizes error
Perceptron learning algorithm (cont.)

```
function PERCEPTRON-LEARNING(examples, network)
  returns a perceptron hypothesis
inputs: examples, a set of examples, each with inputs \( x_1, x_2 .. \) and output \( y \)
  network, a perceptron with weights \( W_j \) and act. function \( g \)
repeat
  for each \( e \) in examples do
    \( in = \sum_{j=0}^{n} W_j x_j[e] \)
    \( Err = y[e] - g(in) \)
    \( W_j = W_j + \alpha \cdot Err \cdot x_j[e] \) \( \alpha \) - the learning rate
until some stopping criterion is satisfied
return NEURAL-NETWORK-HYPOTHESIS(network)
```
Performance of perceptrons vs. decision trees

- Perceptrons better at learning separable problem
- Decision trees better at “restaurant problem”
Multi-layer feed-forward networks

- Adds *hidden* layers
 - The most common is one extra layer
 - The advantage is that more function can be realized, in effect by combining several perceptron functions

- It can be shown that
 - A feed-forward network with a single sufficiently large hidden layer can represent any *continuous* function
 - With two layers, even *discontinuous* functions can be represented

- However
 - Cannot easily tell which functions a particular network is able to represent
 - Not well understood how to choose structure/number of layers for a particular problem
Example network structure

- Feed-forward network with 10 inputs, one output and one hidden layer – suitable for "restaurant problem"
More complex activation functions

- Multi-layer networks can combine simple (linear separation) perceptron activation functions into more complex functions

(combine 2) (combine 2)
Learning in multi-layer networks

- In principle as for perceptrons – adjusting weights to minimize error
- The main difference is what “error” at internal nodes mean – nothing to compare to
- Solution: Propagate error at output nodes back to hidden layers
 - Successively propagate backwards if the network has several hidden layers
- The resulting Back-propagation algorithm is the standard learning method for neural networks
Learning neural network structure

- Need to learn network structure
 - Learning algorithms have assumed fixed network structure
 - However, we do not know in advance what structure will be necessary and sufficient

- Solution approach
 - Try different configurations, keep the best
 - Search space is very large (# layers and # nodes)
 - "Optimal brain damage": Start with full network, remove nodes selectively (optimally)
 - "Tiling": Start with minimal network that covers subset of training set, expand incrementally
Support Vector Machines (SVM)

- Currently the most popular approach for supervised learning
 - Does not require any prior knowledge
 - Scales to very large problems
- Attractive features of SVM
 - Constructs a *maximum margin separator*, decision boundary with max. possible distance to examples
 - Creates linear separators, but can embed data in higher dimensions (*kernel trick*)
 - A *non-parametric* method, i.e. may retain examples (instances, in addition to parameters as in NN), thus be able to express more complex functions
Classification by SVM

- SVM finds the separator with maximum margin between examples
- The example points nearest the separator are called support vectors
The kernel trick in SVM

- What if the examples are not linearly separable?
- SVM maps each example to a new vector in a higher dimension space, using *kernel functions*
- In the new space, a linear maximum separator may be found (the *kernel trick*)
Ensemble learning (EM)

- In *ensemble learning* predictions from a *collection* of hypotheses are combined.
- Example: Three linear separators are combined such that all separators must return positive for the overall classification to be positive.
- The combined classifier is more expressive without being much more complex.
- *Boosting* is a widely used ensemble learning method.
Summary

- Neural networks (NN) are inspired by human brains, and are complex nonlinear functions with many parameters learned from noisy data.
- A perceptron is a feed-forward network with no hidden layers and can only represent linearly separable functions.
- Multi-layer feed-forward NN can represent arbitrary functions, and be trained efficiently using the back-propagation algorithm.
- Support vector machines (SVM) is an effective method for learning classifiers in large data sets.
- Ensemble learning (EM) combines several simpler classifiers in a more complex function.